scholarly journals Soft Rough Approximation Operators and Related Results

2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Zhaowen Li ◽  
Bin Qin ◽  
Zhangyong Cai

Soft set theory is a newly emerging tool to deal with uncertain problems. Based on soft sets, soft rough approximation operators are introduced, and soft rough sets are defined by using soft rough approximation operators. Soft rough sets, which could provide a better approximation than rough sets do, can be seen as a generalized rough set model. This paper is devoted to investigating soft rough approximation operations and relationships among soft sets, soft rough sets, and topologies. We consider four pairs of soft rough approximation operators and give their properties. Four sorts of soft rough sets are investigated, and their related properties are given. We show that Pawlak's rough set model can be viewed as a special case of soft rough sets, obtain the structure of soft rough sets, give the structure of topologies induced by a soft set, and reveal that every topological space on the initial universe is a soft approximating space.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Şaziye Yüksel ◽  
Zehra Güzel Ergül ◽  
Naime Tozlu

Soft rough sets which are a hybrid model combining rough sets with soft sets are defined by using soft rough approximation operators. Soft rough sets can be seen as a generalized rough set model based on soft sets. The present paper aims to combine the covering soft set with rough set, which gives rise to the new kind of soft rough sets. Based on the covering soft sets, we establish soft covering approximation space and soft covering rough approximation operators and present their basic properties. We show that a new type of the soft covering upper approximation operator is smaller than soft upper approximation operator. Also we present an example in medicine which aims to find the patients with high prostate cancer risk. Our data are 78 patients from Selçuk University Meram Medicine Faculty.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Zhiming Zhang

Fuzzy set theory, rough set theory, and soft set theory are three effective mathematical tools for dealing with uncertainties and have many wide applications both in theory and practise. Meng et al. (2011) introduced the notion of soft fuzzy rough sets by combining fuzzy sets, rough sets, and soft sets all together. The aim of this paper is to study the parameter reduction of fuzzy soft sets based on soft fuzzy rough approximation operators. We propose some concepts and conditions for two fuzzy soft sets to generate the same lower soft fuzzy rough approximation operators and the same upper soft fuzzy rough approximation operators. The concept of reduct of a fuzzy soft set is introduced and the procedure to find a reduct for a fuzzy soft set is given. Furthermore, the concept of exclusion of a fuzzy soft set is introduced and the procedure to find an exclusion for a fuzzy soft set is given.


2011 ◽  
Vol 2011 ◽  
pp. 1-10
Author(s):  
Sharmistha Bhattacharya (Halder) ◽  
Bijan Davvaz

Fuzzy sets, rough sets, and later on IF sets became useful mathematical tools for solving various decision making problems and data mining problems. Molodtsov introduced another concept soft set theory as a general frame work for reasoning about vague concepts. Since most of the data collected are either linguistic variable or consist of vague concepts so IF set and soft set help a lot in data mining problem. The aim of this paper is to introduce the concept of IF soft lower rough approximation and IF upper rough set approximation. Also, some properties of this set are studied, and also some problems of decision making are cited where this concept may help. Further research will be needed to apply this concept fully in the decision making and data mining problems.


2012 ◽  
Vol 3 (3) ◽  
pp. 33-48
Author(s):  
Tutut Herawan

In this paper, the author presents the concept of topological space that must be used to show a relation between rough set and soft set. There are two main results presented; firstly, a construction of a quasi-discrete topology using indiscernibility (equivalence) relation in rough set theory is described. Secondly, the paper describes that a “general” topology is a special case of soft set. Hence, it is concluded that every rough set can be considered as a soft set.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Haidong Zhang ◽  
Lan Shu ◽  
Shilong Liao

The soft set theory, originally proposed by Molodtsov, can be used as a general mathematical tool for dealing with uncertainty. In this paper, we present concepts of soft rough intuitionistic fuzzy sets and intuitionistic fuzzy soft rough sets, and investigate some properties of soft rough intuitionistic fuzzy sets and intuitionistic fuzzy soft rough sets in detail. Furthermore, classical representations of intuitionistic fuzzy soft rough approximation operators are presented. Finally, we develop an approach to intuitionistic fuzzy soft rough sets based on decision making and a numerical example is provided to illustrate the developed approach.


2011 ◽  
Vol 282-283 ◽  
pp. 283-286
Author(s):  
Hai Dong Zhang ◽  
Yan Ping He

This paper presents a general framework for the study of rough set approximation operators in vague environment in which both constructive and axiomatic approaches are used. In constructive approach, by means of a vague relation defined by us, a new pair of vague rough approximation operators is first defined. Also some properties about the approximation operators are then discussed. In axiomatic approach, an operator-oriented characterization of vague rough sets is proposed, that is, vague rough approximation operators are defined by axioms.


Filomat ◽  
2017 ◽  
Vol 31 (19) ◽  
pp. 6175-6183
Author(s):  
Yan-Lan Zhang ◽  
Chang-Qing Li

Rough set theory is an important tool for data mining. Lower and upper approximation operators are two important basic concepts in the rough set theory. The classical Pawlak rough approximation operators are based on equivalence relations and have been extended to relation-based generalized rough approximation operators. This paper presents topological properties of a pair of relation-based generalized rough approximation operators. A topology is induced by the pair of generalized rough approximation operators from an inverse serial relation. Then, connectedness, countability, separation property and Lindel?f property of the topological space are discussed. The results are not only beneficial to obtain more properties of the pair of approximation operators, but also have theoretical and actual significance to general topology.


Author(s):  
B. K. Tripathy ◽  
K. R. Arun

Uncertainty is an inherent characteristic of modern day databases. In order to handle such databases with uncertainty, several new models have been introduced in the literature. Some new models like fuzzy sets introduced by Zadeh (1965), rough sets invented by Z. Pawlak (1982) and intuitionistic fuzzy sets extended by K.T. Atanassov (1986). All these models have their own pros and cons. However, one of the major problems with these models is the lack of sufficient number of parameters to deal with uncertainty. In order to add adequate number of parameters, soft set theory was introduced by Molodtsov in 1999. Since then the theoretical developments on soft set theory has attracted the attention of researchers. However, the practical applications of any theory are of enough importance to make use of it. In this chapter, the basic definitions of soft set, operations and properties are discussed. Also, the aim in this chapter is to discuss on the different applications of soft sets; like decision making, parameter reduction, data clustering and data dealing with incompleteness.


2017 ◽  
Vol 42 (1) ◽  
pp. 59-81 ◽  
Author(s):  
Saeed Mirvakili ◽  
Seid Mohammad Anvariyeh ◽  
Bijan Davvaz

AbstractThe initiation and majority on rough sets for algebraic hyperstructures such as hypermodules over a hyperring have been concentrated on a congruence relation. The congruence relation, however, seems to restrict the application of the generalized rough set model for algebraic sets. In this paper, in order to solve this problem, we consider the concept of set-valued homomorphism for hypermodules and we give some examples of set-valued homomorphism. In this respect, we show that every homomorphism of the hypermodules is a set-valued homomorphism. The notions of generalized lower and upper approximation operators, constructed by means of a set-valued mapping, which is a generalization of the notion of lower and upper approximations of a hypermodule, are provided. We also propose the notion of generalized lower and upper approximations with respect to a subhypermodule of a hypermodule discuss some significant properties of them.


2021 ◽  
Vol 40 (1) ◽  
pp. 565-573
Author(s):  
Di Zhang ◽  
Pi-Yu Li ◽  
Shuang An

In this paper, we propose a new hybrid model called N-soft rough sets, which can be seen as a combination of rough sets and N-soft sets. Moreover, approximation operators and some useful properties with respect to N-soft rough approximation space are introduced. Furthermore, we propose decision making procedures for N-soft rough sets, the approximation sets are utilized to handle problems involving multi-criteria decision-making(MCDM), aiming at electing the optional objects and the possible optional objects based on their attribute set. The algorithm addresses some limitations of the extended rough sets models in dealing with inconsistent decision problems. Finally, an application of N-soft rough sets in multi-criteria decision making is illustrated with a real life example.


Sign in / Sign up

Export Citation Format

Share Document