scholarly journals The fractional complex transformation for nonlinear fractional partial differential equations in the mathematical physics

Author(s):  
Elsayed M.E. Zayed ◽  
Yasser A. Amer ◽  
Reham M.A. Shohib
BIBECHANA ◽  
2014 ◽  
Vol 12 ◽  
pp. 59-69
Author(s):  
Jamshad Ahmad ◽  
Syed Tauseef Mohyud-Din

In this paper, we applied relatively new fractional complex transform (FCT) to convert the given fractional partial differential equations (FPDEs) into corresponding partial differential equations (PDEs) and Variational Iteration Method (VIM) is to find approximate solution of time- fractional Fornberg-Whitham and time-fractional Wu-Zhang equations. The results so obtained are re-stated by making use of inverse transformation which yields it in terms of original variables. It is observed that the proposed algorithm is highly efficient and appropriate for fractional PDEs arising in mathematical physics and hence can be extended to other problems of diversified nonlinear nature. Numerical results coupled with graphical representations explicitly reveal the complete reliability and efficiency of the proposed algorithm.  DOI: http://dx.doi.org/10.3126/bibechana.v12i0.11687BIBECHANA 12 (2015) 59-69 


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Fanwei Meng

We propose a new approach for solving fractional partial differential equations based on a nonlinear fractional complex transformation and the general Riccati equation and apply it to solve the nonlinear time fractional biological population model and the (4+1)-dimensional space-time fractional Fokas equation. As a result, some new exact solutions for them are obtained. This approach can be suitable for solving fractional partial differential equations with more general forms than the method proposed by S. Zhang and H.-Q. Zhang (2011).


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Bin Zheng

We extend the Exp-function method to fractional partial differential equations in the sense of modified Riemann-Liouville derivative based on nonlinear fractional complex transformation. For illustrating the validity of this method, we apply it to the space-time fractional Fokas equation and the nonlinear fractional Sharma-Tasso-Olver (STO) equation. As a result, some new exact solutions for them are successfully established.


Sign in / Sign up

Export Citation Format

Share Document