scholarly journals Cantilever Beam Metal-Contact MEMS Switch

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Adel Saad Emhemmed ◽  
Abdulmagid A. Aburwein

We present a new design of a miniature RF microelectromechanical system (MEMS) metal-contact switch and investigate various aspects associated with lowering the pull-down voltage and overcoming the stiction problem. Lowering the pull-down voltage in this design is based on reducing the spring constant by changing the cantilever beam geometry of the RF MEMS switch, and the stiction problem is overcome by a simple integrated method using two tiny posts located on the substrate at the free end of the cantilever beam.

2011 ◽  
Vol 403-408 ◽  
pp. 4141-4147 ◽  
Author(s):  
M. Manivannan ◽  
R.Joseph Daniel ◽  
K. Sumangala

A new varying section cantilever beam type RF MEMS switch has been proposed. The main advantage of this switch is that it is inherently stiction free and therefore enhances design flexibility. An analytical model developed using unit load approach for the spring constant of the proposed switch has been presented and it has been shown that the spring constant and therefore the pull in voltage (Vpi) can be considerably reduced with the proposed switch. Simulation studies conducted on two groups of devices clearly demonstrate that the pull in voltage can be reduced by 26% with ten sections. Comparision of the pull in voltage obtained in the simulation studies for devices with the theoretically estimated Vpi shows that the spring constant model presented in this paper accurately estimates the spring constant. The results of analytical studies also demonstrate that the new proposed cantilever beam can considerably reduce the pull in voltage.


2017 ◽  
Vol 23 (10) ◽  
pp. 4699-4708 ◽  
Author(s):  
Peigang Deng ◽  
Ning Wang ◽  
Feng Cai ◽  
Longquan Chen

2017 ◽  
Vol 4 (1) ◽  
pp. 1323367 ◽  
Author(s):  
T. Lakshmi Narayana ◽  
K. Girija Sravani ◽  
K. Srinivasa Rao ◽  
Kun Chen

2011 ◽  
Vol 21 (6) ◽  
pp. 065038 ◽  
Author(s):  
Bo Liu ◽  
Zhiqiu Lv ◽  
Xunjun He ◽  
Meng Liu ◽  
Yilong Hao ◽  
...  

Author(s):  
Lingling Lin ◽  
Feiyan Chen ◽  
Guoqing Hu ◽  
Wenyan Liu ◽  
Baihai Wu

This paper presents a novel electrostatically actuated microelectromechanical switch. The structure of cantilever beam with electrodes sandwiched between Si and SiO2 layers has been established. Placing the pull-down electrodes outside the switching contact, the actuation voltage can be reduced while keeping high contact force and restoration force. The top and bottom dielectric materials separated two conducting electrodes when actuated. Thus, the reliability and the performance of the switch have been greatly improved. The charts of the deflection of the cantilever beam with respect to the voltage have been simulated with the MATLAB computer programming language.


Sign in / Sign up

Export Citation Format

Share Document