microelectromechanical system
Recently Published Documents


TOTAL DOCUMENTS

480
(FIVE YEARS 107)

H-INDEX

33
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
A. R. Kalaiarasi ◽  
T. Deepa ◽  
S. Angalaeswari ◽  
D. Subbulekshmi ◽  
Raja Kathiravan

This work is focused on design and simulation of microelectromechanical system (MEMS)/nanoelectromechanical system (NEMS) rotational devices such as micro/nanothermal rotary actuator and micro/nanogear. MEMS/NEMS technologies have allowed the development of advanced miniaturized rotational devices. MEMS/NEMS-based thermal actuator is a scaled version of movable device which will produce amplified motion when it is subjected to thermal forces. One of the applications of such thermal micro/nanoactuator is integrating it into micro/nanomotor that makes a thermal actuated micro/nanomotor. In this work, design and simulation of micro/nanothermal rotary actuator are done using MEMS/NEMS technology. Stress, current density, and temperature analysis are done for microthermal rotary actuator. The performance of the device is observed by varying the dimensions and materials such as silicon and polysilicon. Stress analysis is used to calculate the yield strength of the material. Current density is used to calculate the safer limit of the material. Temperature analysis is used to calculate the melting point of the material. Also, in this work, design and simulation of microgear have been done. Micro/nanogears are devices that can be used to improve motion performance. The essential is that it transmits rotational motion to a different axis.


Author(s):  
Karolina Anna Orłowska ◽  
Bartosz Michał Świadkowski ◽  
Andrzej Sierakowski ◽  
Teodor Gotszalk

Abstract In this paper we present a metrological measurement technique that is a combination of fibre optic interferometry and a microelectromechanical system (MEMS) sensor for photon force (PF) measurement with traceability via an electromagnetic way. The main advantage of the presented method is the reference to the current balance, which is the primary mass/force metrological standard. The MEMS cantilever is a transducer of the photon force to the deflection that can be compensated with the use of the Lorentz force. This movement is measured with the use of the interferometer and does not require any mechanical calibration. Combining the MEMS current balance system with the interferometry is then the unique and fully metrological solution. The resolution of the proposed measurement technique is calculated to be 4 pN//Hz^(0.5) (2% uncertainty). The PF–MEMS used for the investigation is the cantilever with the resolution of 46 fN/Hz0.5, which was calculated from the thermomechanical noise, and is far below the whole system resolution limit. As far as the whole construction is based on the fibre optic system, it does not require any complex adjustment procedure and may work as an optomechanical reference in any metrological laboratory.


Author(s):  
Yanni Zhang ◽  
Dan Tian ◽  
Jing Pang

A nonlinear oscillator with zero initial conditions is considered, which makes some effective methods, for example, the variational iteration method and the homotopy perturbation method, invalid. To solve the bottleneck, this paper suggests a simple transform to convert the problem into a traditional case so that He’s frequency formulation can be effectively used to solve its approximate solution. An microelectromechanical system (MEMS) oscillator is used as example to show the solution process, and a good result is obtained.


2021 ◽  
Vol 11 (17) ◽  
pp. 8008
Author(s):  
Agnes Bußmann ◽  
Henry Leistner ◽  
Doris Zhou ◽  
Martin Wackerle ◽  
Yücel Congar ◽  
...  

Subcutaneous injection is crucial for the treatment of many diseases. Especially for regular or continuous injections, automated dosing is beneficial. However, existing devices are large, uncomfortable, visible under clothing, or interfere with physical activity. Thus, the development of small, energy efficient and reliable patch pumps or implantable systems is necessary and research on microelectromechanical system (MEMS) based drug delivery devices has gained increasing interest. However, the requirements of medical applications are challenging and especially the dosing precision and reliability of MEMS pumps are not yet sufficiently evaluated. To enable further miniaturization, we propose a precise 5 × 5 mm2 silicon micropump. Detailed experimental evaluation of ten pumps proves a backpressure capability with air of 12.5 ± 0.8 kPa, which indicates the ability to transport bubbles. The maximal water flow rate is 74 ± 6 µL/min and the pumps’ average blocking pressure is 51 kPa. The evaluation of the dosing precision for bolus deliveries with water and insulin shows a high repeatability of dosed package volumes. The pumps show a mean standard deviation of only 0.02 mg for 0.5 mg packages, and therefore, stay below the generally accepted 5% deviation, even for this extremely small amount. The high precision enables the combination with higher concentrated medication and is the foundation for the development of an extremely miniaturized patch pump.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jingui Qian ◽  
Habiba Begum ◽  
Joshua E.-Y. Lee

AbstractThe ability to weigh microsubstances present in low concentrations is an important tool for environmental monitoring and chemical analysis. For instance, developing a rapid analysis platform that identifies the material type of microplastics in seawater would help evaluate the potential toxicity to marine organisms. In this study, we demonstrate the integration of two different techniques that bring together the functions of sparse particle localization and miniaturized mass sensing on a microelectromechanical system (MEMS) chip for enhanced detection and minimization of negative measurements. The droplet sample for analysis is loaded onto the MEMS chip containing a resonant mass sensor. Through the coupling of a surface acoustic wave (SAW) from a SAW transducer into the chip, the initially dispersed microparticles in the droplet are localized over the detection area of the MEMS sensor, which is only 200 µm wide. The accreted mass of the particles is then calibrated against the resulting shift in resonant frequency of the sensor. The SAW device and MEMS chip are detachable after use, allowing the reuse of the SAW device part of the setup instead of the disposal of both parts. Our platform maintains the strengths of noncontact and label-free dual-chip acoustofluidic devices, demonstrating for the first time an integrated microparticle manipulation and real-time mass measurement platform useful for the analysis of sparse microsubstances.


Author(s):  
Hamza Raki ◽  
Kevin Tse Ve Koon ◽  
Henri Souchay ◽  
Fraser Robb ◽  
Olivier Beuf

With the objective of improving MR endoluminal imaging of the colonic wall, electromagnetic simulations of different configurations of single-layer and double-layer, and double-turn endoluminal coil geometries were run. Indeed, during colon navigation, variations in coil orientation with respect to B0 are bound to occur, leading to impaired image acquisition due to a loss of signal uniformity. In this work, three typical coil orientations encountered during navigation were chosen and the resulting signal uniformity of the different geometries was investigated through the simulated B 1 x , y / I R t values. Sampling this quantity over a circle of radius r enabled us to calculate the coefficient of variation (= standard deviation/mean) for this given distance. This procedure was repeated for r ∈ 5 ; 15    mm, which represents the region of interest in the colon. Our results show that single-loop and double-layer geometries could provide complementary solutions for improved signal uniformity. Finally, using four microelectromechanical system switches, we proposed the design of a reconfigurable endoluminal coil able to switch between those two geometries while also ensuring the active decoupling of the endoluminal coil during the RF transmission of an MR experiment.


Sign in / Sign up

Export Citation Format

Share Document