scholarly journals Rich Dynamics of an Epidemic Model with Saturation Recovery

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Hui Wan ◽  
Jing-an Cui

A SIR epidemic model is proposed to understand the impact of limited medical resource on infectious disease transmission. The basic reproduction number is identified. Existence and stability of equilibria are obtained under different conditions. Bifurcations, including backward bifurcation and Hopf bifurcation, are analyzed. Our results suggest that the model considering the impact of limited medical resource may exhibit vital dynamics, such as bistability and periodicity when the basic reproduction numberℝ0is less than unity, which implies that the basic reproductive number itself is not enough to describe whether the disease will prevail or not and a subthreshold number is needed. It is also shown that a sufficient number of sickbeds and other medical resources are very important for disease control and eradication. Considering the costs, we provide a method to estimate a suitable treatment capacity for a disease in a region.

2020 ◽  
Vol 10 (22) ◽  
pp. 8296 ◽  
Author(s):  
Malen Etxeberria-Etxaniz ◽  
Santiago Alonso-Quesada ◽  
Manuel De la Sen

This paper investigates a susceptible-exposed-infectious-recovered (SEIR) epidemic model with demography under two vaccination effort strategies. Firstly, the model is investigated under vaccination of newborns, which is fact in a direct action on the recruitment level of the model. Secondly, it is investigated under a periodic impulsive vaccination on the susceptible in the sense that the vaccination impulses are concentrated in practice in very short time intervals around a set of impulsive time instants subject to constant inter-vaccination periods. Both strategies can be adapted, if desired, to the time-varying levels of susceptible in the sense that the control efforts be increased as those susceptible levels increase. The model is discussed in terms of suitable properties like the positivity of the solutions, the existence and allocation of equilibrium points, and stability concerns related to the values of the basic reproduction number. It is proven that the basic reproduction number lies below unity, so that the disease-free equilibrium point is asymptotically stable for larger values of the disease transmission rates under vaccination controls compared to the case of absence of vaccination. It is also proven that the endemic equilibrium point is not reachable if the disease-free one is stable and that the disease-free equilibrium point is unstable if the reproduction number exceeds unity while the endemic equilibrium point is stable. Several numerical results are investigated for both vaccination rules with the option of adapting through ime the corresponding efforts to the levels of susceptibility. Such simulation examples are performed under parameterizations related to the current SARS-COVID 19 pandemic.


2015 ◽  
Vol 23 (03) ◽  
pp. 423-455
Author(s):  
P. MOUOFO TCHINDA ◽  
JEAN JULES TEWA ◽  
BOULECHARD MEWOLI ◽  
SAMUEL BOWONG

In this paper, we investigate the global dynamics of a system of delay differential equations which describes the interaction of hepatitis B virus (HBV) with both liver and blood cells. The model has two distributed time delays describing the time needed for infection of cell and virus replication. We also include the efficiency of drug therapy in inhibiting viral production and the efficiency of drug therapy in blocking new infection. We compute the basic reproduction number and find that increasing delays will decrease the value of the basic reproduction number. We study the sensitivity analysis on the key parameters that drive the disease dynamics in order to determine their relative importance to disease transmission and prevalence. Our analysis reveals that the model exhibits the phenomenon of backward bifurcation (where a stable disease-free equilibrium (DFE) co-exists with a stable endemic equilibrium when the basic reproduction number is less than unity). Numerical simulations are presented to evaluate the impact of time-delays on the prevalence of the disease.


2009 ◽  
Vol 2009 ◽  
pp. 1-17 ◽  
Author(s):  
Xiaohong Tian ◽  
Rui Xu

We investigate the stability of an SIR epidemic model with stage structure and time delay. By analyzing the eigenvalues of the corresponding characteristic equation, the local stability of each feasible equilibrium of the model is established. By using comparison arguments, it is proved when the basic reproduction number is less than unity, the disease free equilibrium is globally asymptotically stable. When the basic reproduction number is greater than unity, sufficient conditions are derived for the global stability of an endemic equilibrium of the model. Numerical simulations are carried out to illustrate the theoretical results.


2013 ◽  
Vol 21 (02) ◽  
pp. 1350010 ◽  
Author(s):  
KLOT PATANARAPEELERT ◽  
D. GARCIA LOPEZ ◽  
I-MING TANG ◽  
MARC A. DUBOIS

During the initial phase of an epidemic, individual displacements between different regions modify the contact patterns. Understanding mobility processes and their consequences is necessary to predict the subsequent spread of the disease in order to optimize control policies. The basic reproduction number is commonly used to determine the threshold between extinction and expansion of the disease. Once it is derived for an epidemic model that includes the travel of population between distinct localities, the dependence of the diseases dynamics upon travel rates becomes explicit. In this study, we examine the effects of travel on the epidemic threshold for a model of two communities. The travel rates are treated as varying subject to two scenarios. We show theoretically that if the transmission potentials within communities are moderate, the epidemic threshold can be modified by travel. The conditions for the presence of the threshold induced by travel is determined and the critical values of travel at which the basic reproduction number is equal to one are derived. We show further that these results can also be applied to a model of three communities under specific travel patterns and that the derived basic reproduction number has a form similar to that of the two communities problem.


2013 ◽  
Vol 06 (05) ◽  
pp. 1350029 ◽  
Author(s):  
XINZHU MENG ◽  
ZHITAO WU ◽  
TONGQIAN ZHANG

Based on an epidemic model which Manvendra and Vinay [Mathematical model to simulate infections disease, VSRD-TNTJ3(2) (2012) 60–68] have proposed, we consider the dynamics and therapeutic strategy of a SEIS epidemic model with latent patients and active patients. First, the basic reproduction number is established by applying the method of the next generation matrix. By means of appropriate Lyapunov functions, it is proven that while the basic reproduction number 0 < R0 < 1, the disease-free equilibrium is globally asymptotically stable and the disease eliminates; and if the basic reproduction number R0 > 1, the endemic equilibrium is globally asymptotically stable and therefore the disease becomes endemic. Numerical investigations of their basin of attraction indicate that the locally stable equilibria are global attractors. Second, we consider the impact of treatment on epidemic disease and analytically determine the most effective therapeutic strategy. We conclude that the most effective therapeutic strategy consists of treating both the exposed and the infectious, while treating only the exposed is the least effective therapeutic strategy. Finally, numerical simulations are given to illustrate the effectiveness of the proposed results.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
El Mehdi Lotfi ◽  
Mehdi Maziane ◽  
Khalid Hattaf ◽  
Noura Yousfi

The aim of this paper is to study the dynamics of a reaction-diffusion SIR epidemic model with specific nonlinear incidence rate. The global existence, positivity, and boundedness of solutions for a reaction-diffusion system with homogeneous Neumann boundary conditions are proved. The local stability of the disease-free equilibrium and endemic equilibrium is obtained via characteristic equations. By means of Lyapunov functional, the global stability of both equilibria is investigated. More precisely, our results show that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than or equal to unity, which leads to the eradication of disease from population. When the basic reproduction number is greater than unity, then disease-free equilibrium becomes unstable and the endemic equilibrium is globally asymptotically stable; in this case the disease persists in the population. Numerical simulations are presented to illustrate our theoretical results.


2021 ◽  
Author(s):  
Alex Gimenez-Romero ◽  
Federico Vazquez ◽  
Cristobal Lopez ◽  
Manuel A Matias

Marine infectious diseases are more prevalent in recent times due to climate change and other anthropogenic pressures, posing a substantial threat to marine ecosystems and the conservation of their biodiversity. An important subset of marine organisms are sessile, for which the most common mechanism for disease transmission is direct contact with waterborne parasites. Only recently, some deterministic compartmental models have been proposed to describe this kind of epidemics, being these models based on non-spatial descriptions where space is homogenised and parasite mobility is not explicitly accounted for. However, in realistic situations, epidemic transmission is conditioned by the spatial distribution of hosts and the parasites mobility patterns. Thus, the interplay between these factors is expected to have a crucial effect in the evolution of the epidemic, so calling for a explicit description of space. In this work we develop a spatially-explicit individual-based model to study disease transmission by waterborne parasites in sessile marine populations. We investigate the impact of spatial disease transmission, performing extensive numerical simulations and analytical approximations. Specifically, the effects of parasite mobility into the epidemic threshold and the temporal evolution of the epidemic are assessed. We show that larger values of pathogen mobility have two main implications: more severe epidemics, as the number of infections increases, and shorter time-scales to extinction. Moreover, an analytical expression for the basic reproduction number of the spatial model, is derived as function of the non-spatial counterpart, which characterises a transition between a disease-free and a propagation phase, in which the disease propagates over a large fraction of the system. This allows to determine a phase diagram for the epidemic model as function of the parasite mobility and the basic reproduction number of the non-spatial model.


Author(s):  
Syafruddin Side ◽  
Ahmad Zaki ◽  
S. Sartika

Penelitian ini bertujuan untuk membangun model penyebaran penyakit Tifus tipe SIRI (Susceptible-Infected-Recovered-Infected), dengan menambahkan asumsi bahwa manusia yang sembuh dapat kembali terinfeksi penyakit Tifus. Model ini di bagi menjadi 3 kelas yaitu rentan, terinfeksi dan sembuh. Adapun prosedur penelitian dilakukan melalui tahapan-tahapan: membangun model penyebaran penyakit Tifus tipe SIRI, Menguji Kestabilan titik kesetimbangan dan menentukan bilangan reproduksi dasar , kemudian menerapkannya pada kasus Penyakit Tifus di Provinsi Sulawesi Selatan. Data yang digunakan dalam membangun model adalah jumlah penderita penyakit Tifus tahun 2018 dari Dinas Kesehatan Provinsi Sulawesi Selatan. Model matematika tipe SIRI digunakan untuk menentukan titik equilibrium. Berdasarkan hasil simulasi model SIRI diperoleh bilangan reproduksi dasar (  sebesar 0,000903 yang menandakan bahwa penyebaran penyakit Tifus di Provinsi Sulawesi Selatan pada tahun 2018 bukan kejadian luar biasa atau dapat dikatakan bahwa seseorang yang terinfeksi penyakit Tifus ini tidak menyebabkan orang lain terkenapenyakit yang sama, dengan kata lain tidak terjadi wabah pada populasi tersebut.Kata kunci: Titik Equilibrium, Bilangan Reproduksi Dasar, Tifus, Model SIRI. The research aims to build a SIRI model of the Typhoid spread (Susceptible-Infected-Recovered-Infected) by adding assumption that people who are recovered might be infected again. This model is divided into three classes, namely, susceptible, infected and recovered. the research procedure is carried out through several stages: Building SIRI model for the spread of Typhoid, examining the stability of the equilibrium point and determining the basic reproduction number, and applying the model to Typhoid cases in South Sulawesi. The data is the number of Typhus patients in 2018 that was obtained from Health office of South Sulawesi Province. SIRI type mathematical models are used to determine the equilibrium point. Based on the simulation results of the SIRI model, the basic reproduction number is 0,000903 indicate that, indicating that the spread of Typhus in the Province of South Sulawesi in 2018 was not an extraordinary event or it can be said that someone who is infected with this Typhoid does not cause another person to contract the same disease, in other words there was no outbreak in that population.Keywords: equilibrium Point, Basic Reproductive Number, Typhoid, SIRI Model.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Juping Zhang ◽  
Zhen Jin

We discuss the epidemic network model with infectious force in latent and infected period. We obtain the basic reproduction number and analyze the globally dynamic behaviors of the disease-free equilibrium when the basic reproduction number is less than one. The effects of various immunization schemes are studied. Finally, the final sizes relation is derived for the network epidemic model. The derivation depends on an explicit formula for the basic reproduction number of network of disease transmission models.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Yao Chen ◽  
Mei Yan ◽  
Zhongyi Xiang

A two-city SIR epidemic model with transport-related infections is proposed. Some good analytical results are given for this model. If the basic reproduction numberℜ0γ≤1, there exists a disease-free equilibrium which is globally asymptotically stable. There exists an endemic equilibrium which is locally asymptotically stable if the basic reproduction numberℜ0γ>1. We also show the permanence of this SIR model. In addition, sufficient conditions are established for global asymptotic stability of the endemic equilibrium.


Sign in / Sign up

Export Citation Format

Share Document