scholarly journals The Study of Randomized Visual Saliency Detection Algorithm

2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Yuantao Chen ◽  
Weihong Xu ◽  
Fangjun Kuang ◽  
Shangbing Gao

Image segmentation process for high quality visual saliency map is very dependent on the existing visual saliency metrics. It is mostly only get sketchy effect of saliency map, and roughly based visual saliency map will affect the image segmentation results. The paper had presented the randomized visual saliency detection algorithm. The randomized visual saliency detection method can quickly generate the same size as the original input image and detailed results of the saliency map. The randomized saliency detection method can be applied to real-time requirements for image content-based scaling saliency results map. The randomization method for fast randomized video saliency area detection, the algorithm only requires a small amount of memory space can be detected detailed oriented visual saliency map, the presented results are shown that the method of visual saliency map used in image after the segmentation process can be an ideal segmentation results.

2020 ◽  
Vol 12 (1) ◽  
pp. 152 ◽  
Author(s):  
Ting Nie ◽  
Xiyu Han ◽  
Bin He ◽  
Xiansheng Li ◽  
Hongxing Liu ◽  
...  

Ship detection in panchromatic optical remote sensing images is faced with two major challenges, locating candidate regions from complex backgrounds quickly and describing ships effectively to reduce false alarms. Here, a practical method was proposed to solve these issues. Firstly, we constructed a novel visual saliency detection method based on a hyper-complex Fourier transform of a quaternion to locate regions of interest (ROIs), which can improve the accuracy of the subsequent discrimination process for panchromatic images, compared with the phase spectrum quaternary Fourier transform (PQFT) method. In addition, the Gaussian filtering of different scales was performed on the transformed result to synthesize the best saliency map. An adaptive method based on GrabCut was then used for binary segmentation to extract candidate positions. With respect to the discrimination stage, a rotation-invariant modified local binary pattern (LBP) description was achieved by combining shape, texture, and moment invariant features to describe the ship targets more powerfully. Finally, the false alarms were eliminated through SVM training. The experimental results on panchromatic optical remote sensing images demonstrated that the presented saliency model under various indicators is superior, and the proposed ship detection method is accurate and fast with high robustness, based on detailed comparisons to existing efforts.


Information ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 257 ◽  
Author(s):  
Bashir Ghariba ◽  
Mohamed S. Shehata ◽  
Peter McGuire

Human eye movement is one of the most important functions for understanding our surroundings. When a human eye processes a scene, it quickly focuses on dominant parts of the scene, commonly known as a visual saliency detection or visual attention prediction. Recently, neural networks have been used to predict visual saliency. This paper proposes a deep learning encoder-decoder architecture, based on a transfer learning technique, to predict visual saliency. In the proposed model, visual features are extracted through convolutional layers from raw images to predict visual saliency. In addition, the proposed model uses the VGG-16 network for semantic segmentation, which uses a pixel classification layer to predict the categorical label for every pixel in an input image. The proposed model is applied to several datasets, including TORONTO, MIT300, MIT1003, and DUT-OMRON, to illustrate its efficiency. The results of the proposed model are quantitatively and qualitatively compared to classic and state-of-the-art deep learning models. Using the proposed deep learning model, a global accuracy of up to 96.22% is achieved for the prediction of visual saliency.


2012 ◽  
Vol 239-240 ◽  
pp. 811-815
Author(s):  
Zhi Hai Sun ◽  
Teng Song ◽  
Wen Hui Zhou ◽  
Hua Zhang

Visual saliency detection has become an important step between computer vision and digital image processing. Recent methods almost form a computational model based on color, which are difficult to overcome the shortcoming with cluttered and textured background. This paper proposes a novel salient object detection algorithm integrating with region color contrast and histograms of oriented gradients (HoG). Extensively experiments show that our algorithm outperforms other state-of-art saliency methods, yielding higher precision and better recall rate, even lower mean absolution error.


Author(s):  
Jing Tian ◽  
Weiyu Yu

Visual saliency detection aims to produce saliency map of images via simulating the behavior of the human visual system (HVS). An ant-inspired approach is proposed in this chapter. The proposed approach is inspired by the ant’s behavior to find the most saliency regions in image, by depositing the pheromone information (through ant’s movements) on the image to measure its saliency. Furthermore, the ant’s movements are steered by the local phase coherence of the image. Experimental results are presented to demonstrate the superior performance of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document