scholarly journals Photovoltaic Performance of ZnO Nanorod and ZnO : CdO Nanocomposite Layers in Dye-Sensitized Solar Cells (DSSCs)

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Sule Erten-Ela

Triphenylene diamine sensitizer comprising donor, electron conducting, and anchoring group is synthesized for a potential application in dye-sensitized solar cells. Absorption spectrum, electrochemical and photovoltaic properties of triphenylene diamine have been investigated. Two different electrodes are used for dye-sensitized solar cells. The performances of ZnO nanorod electrodes are compared to ZnO : CdO nanocomposite electrode. Also, the theoretical calculations for HOMO and LUMO orbitals are used to estimate the photovoltaic properties of organic sensitizer in the design stage. ZnO : CdO nanocomposite electrode-based dye-sensitized solar cell sensitized with organic sensitizer exhibits higher efficiencies than ZnO nanorod electrode. For a typical device, a solar energy conversion efficiency (η) of 0.80 based on ZnO : CdO nanocomposite is achieved under simulated AM 1.5 solar irradiation (100 mW cm−2) with a short circuit photocurrent density (Jsc) of 3.10 mA/cm2, an open-circuit voltage (Voc) of 480 mV, and a fill factor (FF) of 0.57. These results suggest that the ZnO : CdO nanocomposite system is a good selection and a promising candidate for electrode system in dye-sensitized solar cells.

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1304
Author(s):  
Yung-Sheng Yen ◽  
Velu Indumathi

A series of novel double-anchoring dyes for phenoxazine-based organic dyes with two 2-cyanoacetic acid acceptors/anchors, and the inclusion of a 2-ethylhexyl chain at the nitrogen atom of the phenoxazine that is connected with furan, thiophene, and 3-hexylthiophene as a linker, are used as sensitizers for dye-sensitized solar cells. The double-anchoring dye exhibits strong electronic coupling with TiO2, provided that there is an efficient charge injection rate. The result showed that the power conversion efficiency of DP-2 with thiophene linker-based cell reached 3.80% higher than that of DP-1 with furan linker (η = 1.53%) under standard illumination. The photovoltaic properties are further tuned by co-adsorption strategy, which improved power conversion efficiencies slightly. Further molecular theoretical computation and electrochemical impedance spectroscopy analysis of the dyes provide further insight into the molecular geometry and the impact of the different π-conjugated spacers on the photophysical and photovoltaic performance.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1710
Author(s):  
Muhammad Saleem ◽  
Ali Algahtani ◽  
Saif Ur Rehman ◽  
Muhammad Sufyan Javed ◽  
Kashif Irshad ◽  
...  

Cu- and Sm-doped ZnO nanorod arrays were grown with 1 wt% of Sm and different weight percents (0.0, 0.5, 1.0 and 1.5 wt%) of Cu by two-step hydrothermal method. The influence of Cu concentration and precursor of Sm on the structural, optical and photovoltaic properties of ZnO nanorod arrays was investigated. An X-ray diffraction study showed that the nanorod arrays grown along the (002) plane, i.e., c-axis, had hexagonal wurtzite crystal structure. The lattice strain is present in all samples and shows an increasing trend with Cu/Sm concentration. Field emission scanning electron microscopy was used to investigate the morphology and the nanorod arrays grown vertically on the FTO substrates. The diameter of nanorod arrays ranged from 68 nm to 137 nm and was found highly dependent on Cu concentration and Sm precursor while the density of nanorod arrays almost remains the same. The grown nanorod arrays served as photoelectrodes for fabricating dye-sensitized solar cells (DSSCs). The overall light to electricity conversion efficiency ranged from 1.74% (sample S1, doped with 1 wt% of Sm and 0.0 wt% of Cu) to more than 4.14% (sample S4, doped with 1 wt% of Sm and 1.5 wt% of Cu), which is 60% higher than former sample S1. The increment in DSSCs efficiency is attributed either because of the doping of Sm3+ ions which increase the absorption region of light spectrum by up/down conversion or the doping of Cu ions which decrease the recombination and backward transfer of photo-generated electrons and increase the electron transport mobility. This work indicates that the coupled use of Cu and Sm in ZnO nanorod array films have the potential to enhance the performance of dye-sensitized solar cells.


2021 ◽  
Author(s):  
Pengjuan Zhou ◽  
Bobing Lin ◽  
Ran Chen ◽  
Jianying Liang ◽  
Zhongwei An ◽  
...  

The development of the new dye sensitizers to further reveal the influence of changes in structural components on photovoltaic performance is of great significance to dye-sensitized solar cells (DSSCs). The...


2021 ◽  
Vol 6 (2) ◽  
pp. 77-82
Author(s):  
Herlin Pujiarti ◽  
◽  
Nadiya Ayu Astarini ◽  
Markus Diantoro ◽  
Muhammad Safwan Aziz ◽  
...  

Studies of comparing the performance of photoelectrode for dye-sensitized solar cells (DSSCs) continue to be carried out and developed. The ZnO nanorods as an electrode for DSSCs have been shown to have high electron collection due to the capability of electron photoexcitation and increased electron transport. Various methods of making ZnO nanorods have been studied and developed. However, the method requires controlled conditions under high temperature and pressure, thus limiting the commercialization of ZnO nanorods. Therefore, the seed solution-based hydrothermal method was chosen in the ZnO nanorod deposition process because it is an effective method, low-cost and easier fabrication process. The method of growing ZnO nanorod was carried out with three times of growing for 6 hours. ZnO nanorod was synthesized using different seed solutions, namely sample 1 and sample 2 by using methoxy and isopropanol, respectively. In this work, the SEM image shows the growth of ZnO nanorods vertically aligned on the FTO substrate and resulted in a smaller diameter for the isopropanol seed solution. The smaller diameter of the ZnO nanorod provides a larger surface area then increasing the total amount of dye attached to the ZnO nanorod and improve the photovoltaic performance.


Sign in / Sign up

Export Citation Format

Share Document