scholarly journals Evaluation of Algebraic Iterative Image Reconstruction Methods for Tetrahedron Beam Computed Tomography Systems

2013 ◽  
Vol 2013 ◽  
pp. 1-14
Author(s):  
Joshua Kim ◽  
Huaiqun Guan ◽  
David Gersten ◽  
Tiezhi Zhang

Tetrahedron beam computed tomography (TBCT) performs volumetric imaging using a stack of fan beams generated by a multiple pixel X-ray source. While the TBCT system was designed to overcome the scatter and detector issues faced by cone beam computed tomography (CBCT), it still suffers the same large cone angle artifacts as CBCT due to the use of approximate reconstruction algorithms. It has been shown that iterative reconstruction algorithms are better able to model irregular system geometries and that algebraic iterative algorithms in particular have been able to reduce cone artifacts appearing at large cone angles. In this paper, the SART algorithm is modified for the use with the different TBCT geometries and is tested using both simulated projection data and data acquired using the TBCT benchtop system. The modified SART reconstruction algorithms were able to mitigate the effects of using data generated at large cone angles and were also able to reconstruct CT images without the introduction of artifacts due to either the longitudinal or transverse truncation in the data sets. Algebraic iterative reconstruction can be especially useful for dual-source dual-detector TBCT, wherein the cone angle is the largest in the center of the field of view.

2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Hsuan-Ming Huang ◽  
Ing-Tsung Hsiao

Background and Objective. Over the past decade, image quality in low-dose computed tomography has been greatly improved by various compressive sensing- (CS-) based reconstruction methods. However, these methods have some disadvantages including high computational cost and slow convergence rate. Many different speed-up techniques for CS-based reconstruction algorithms have been developed. The purpose of this paper is to propose a fast reconstruction framework that combines a CS-based reconstruction algorithm with several speed-up techniques.Methods. First, total difference minimization (TDM) was implemented using the soft-threshold filtering (STF). Second, we combined TDM-STF with the ordered subsets transmission (OSTR) algorithm for accelerating the convergence. To further speed up the convergence of the proposed method, we applied the power factor and the fast iterative shrinkage thresholding algorithm to OSTR and TDM-STF, respectively.Results. Results obtained from simulation and phantom studies showed that many speed-up techniques could be combined to greatly improve the convergence speed of a CS-based reconstruction algorithm. More importantly, the increased computation time (≤10%) was minor as compared to the acceleration provided by the proposed method.Conclusions. In this paper, we have presented a CS-based reconstruction framework that combines several acceleration techniques. Both simulation and phantom studies provide evidence that the proposed method has the potential to satisfy the requirement of fast image reconstruction in practical CT.


2014 ◽  
Vol 24 (12) ◽  
pp. 2989-3002 ◽  
Author(s):  
Kristin Jensen ◽  
Anne Catrine T. Martinsen ◽  
Anders Tingberg ◽  
Trond Mogens Aaløkken ◽  
Erik Fosse

2014 ◽  
Vol 63 (5) ◽  
pp. 058701
Author(s):  
Yang Fu-Qiang ◽  
Zhang Ding-Hua ◽  
Huang Kui-Dong ◽  
Wang Kun ◽  
Xu Zhe

Sign in / Sign up

Export Citation Format

Share Document