scholarly journals Transplantation of Bone Marrow-Derived Mesenchymal Stem Cells Promotes Delayed Wound Healing in Diabetic Rats

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jiangbo Wan ◽  
Liulu Xia ◽  
Wenjia Liang ◽  
Yi Liu ◽  
Qian Cai

In this paper, we established a delayed wound healing model on diabetic rat to mimic the pathophysiology of clinical patients who suffered from diabetic foot ulcers. We also evaluated if transplantation of allogeneic bone marrow-derived mesenchymal stem cells could promote the delayed wound healing and investigated the possible underlying biological mechanisms and stem cell behavior involved in this process. The results showed that bone marrow-derived mesenchymal stem cells had a positive effect on delayed wound healing in diabetic rats. Intramuscular transplantation demonstrated the best efficacy. This effect is associated with granulation tissue formation, angiogenesis, cellular proliferation, and high vascular endothelial growth factor expression in wound tissues. In addition, bone marrow-derived mesenchymal stem cells have been shown to mobilize and find home for ischemic and wounded tissues to participate in the process of wound healing. Intramuscular transplantation of exogenous isogeneic stem cells may be suitable for clinical application in the treatment of diabetic foot ulcers although the safety of this therapy should be considered.

Author(s):  
Silvia M Becerra-Bayona ◽  
Víctor Alfonso Solarte-David ◽  
Claudia L Sossa ◽  
Ligia C Mateus ◽  
Martha Villamil ◽  
...  

Summary Diabetic foot ulcer morbidity and mortality are dramatically increasing worldwide, reinforcing the urgency to propose more effective interventions to treat such a devastating condition. Previously, using a diabetic mouse model, we demonstrated that administration of bone marrow mesenchymal stem cells derivatives is more effective than the use of bone marrow mesenchymal stem cells alone. Here, we used the aforementioned treatments on three patients with grade 2 diabetic foot ulcers and assessed their beneficial effects, relative to the conventional approach. In the present study, two doses of cell derivatives, one dose of mesenchymal stem cells or one dose of vehicle (saline solution with 5% of human albumin), were intradermally injected around wounds. Wound healing process and changes on re-epithelialization were macroscopically evaluated until complete closure of the ulcers. All ulcers were simultaneously treated with conventional treatment (PolyMen® dressing). Patients treated with either cell derivatives or mesenchymal stem cells achieved higher percentages of wound closure in shorter times, relative to the patient treated with the conventional treatment. The cell derivative and mesenchymal stem cells approaches resulted in complete wound closure and enhanced skin regeneration at some point between days 35 and 42, although no differences between these two treatments were observed. Moreover, wounds treated with the conventional treatment healed after 161 days. Intradermal administration of cell derivatives improved wound healing to a similar extent as mesenchymal stem cells. Thus, our results suggest that mesenchymal stem cell derivatives may serve as a novel and potential therapeutic approach to treat diabetic foot ulcers. Learning points: In diabetic mouse models, the administration of mesenchymal stem cells derivatives have been demonstrated to be more effective than the use of marrow mesenchymal stem cells alone. Mesenchymal stem cells have been explored as an attractive therapeutic option to treat non-healing ulcers. Mesenchymal stem cells derivatives accelerate the re-epithelialization on diabetic foot ulcers.


Angiology ◽  
2020 ◽  
Vol 71 (9) ◽  
pp. 853-863 ◽  
Author(s):  
Francisco Javier Álvaro-Afonso ◽  
Irene Sanz-Corbalán ◽  
José Luis Lázaro-Martínez ◽  
Despoina Kakagia ◽  
Nikolaos Papanas

This review provides an outline of the use of adipose-derived mesenchymal stem cells (AMSCs) in the treatment of diabetic foot ulcers (DFUs). A systematic search of PubMed and the Cochrane database was performed on October 2, 2019. Eighteen studies were identified (14 preclinical and 4 clinical). Studies in animal models have demonstrated that AMSCs enhance diabetic wound healing, accelerate granulation tissue formation, and increase reepithelialization and neovascularization. Only 1 randomized control trial has been published so far. Patients (n = 25) with DFUs were treated using an allogeneic AMSC directly on the wound bed as a primary dressing, and improvements were found in complete wound closure in the treatment group (n = 16). Three clinical studies showed that autologous AMSC might be a safe alternative to achieve therapeutic angiogenesis in patients with diabetes and peripheral arterial disease. Based on the available evidence, AMSCs hold promise in the treatment of DFUs. However, this evidence requires confirmation by well-designed trials. Additional studies are also required to understand some issues regarding this treatment for DFUs. For example, the potential application of autologous or allogeneic AMSCs in different types of DFUs, optimal dose/infusion schedules, safety evaluations, and cost-effectiveness.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Liling Zhao ◽  
Zi Guo ◽  
Ke Chen ◽  
Wenjun Yang ◽  
Xinxing Wan ◽  
...  

Background. This study is aimed at investigating the effect of combined transplantation of umbilical cord mesenchymal stem cells (UCMSCs) and umbilical cord blood-derived endothelial colony-forming cells (ECFCs) on diabetic foot ulcer healing and at providing a novel therapy for chronic diabetic foot ulcer. Methods. We reported the treatment of refractory diabetic foot ulcers in twelve patients. Among them, five patients had two or more wounds; thus, one wound in the same patient was treated with cell injection, and other wounds were regarded as self-controls. The remaining seven patients had only one wound; therefore, the difference between the area of wound before and after treatment was estimated. The UCMSCs and ECFCs were injected into the wound along with topically applied hyaluronic acid (HA). Results. In this report, we compared the healing rate of multiple separate wounds in the same foot of the same patient: one treated with cell injection combined with topically applied HA-based hydrogel and was later covered by the hydrocolloid dressings, while the self-control wounds were only treated with conventional therapy and covered by the hydrocolloid dressings. The wound underwent cell injection showed accelerated healing in comparison to control wound within the first week after treatment. In other diabetic patients with only one refractory wound, the healing rate after cell transplantation was significantly faster than that before injection. Two large wounds healed without needing skin grafts after combination therapy of cell injection and HA. After four weeks of combination treatment, wound closure was reached in six patients, and the wounds of the other six patients were significantly reduced in size. Conclusions. Our study suggests that the combination of UCMSCs, ECFCs, and HA can safely synergize the accelerated healing of refractory diabetic foot ulcers.


2021 ◽  
Vol 27 ◽  
Author(s):  
Yuan Li ◽  
Sheng Zhao ◽  
Leanne Van der Merwe ◽  
Wentong Dai ◽  
Cai Lin

Background: Curcumin possesses multiple bioactivities that have beneficial effects on diabetic foot ulcers. Herein, we aimed to conduct a systematic preclinical review of 9 studies including a total of 262 animals, to assess the possible mechanisms of curcumin for wound healing in diabetic animals. Methods: Five databases were searched from inception to May 12, 2020; Rev-Man 5.3 software was applied for data analyses. Cochrane Collaboration’s tool 10-item checklist was used to evaluate the methodological quality, and data revealed scores of risk of bias ranging from 2 to 5. Results: Meta-analysis indicated that curcumin had significant effects on wound healing rate and blood vessel density when compared with control (P < 0.05). The wound regeneration properties of curcumin for diabetic wounds are thought to mainly work through the possible mechanisms of antioxidation, enhanced cell proliferation, increased collagen formation, and angiogenesis. However, the anti-inflammatory effect on wounds in diabetic animals remains controversial. Conclusions: The findings indicate that more randomized controlled trials should be pursued to obtain more reliable results regarding inflammatory response. Overall, curcumin might be a probable candidate for diabetic foot ulcers and may contribute to future clinical trials.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jianing Ding ◽  
Xin Wang ◽  
Bi Chen ◽  
Jieyuan Zhang ◽  
Jianguang Xu

The exosomes are derived from mesenchymal stem cells (MSCs) and may be potentially used as an alternative for cell therapy, for treating diabetic wounds, and aid in angiogenesis. This study, aimed to investigate whether exosomes originated from bone marrow-derived MSCs (BMSCs) preconditioned by deferoxamine (DFO-Exos) exhibited superior proangiogenic property in wound repair and to explore the underlying mechanisms involved. Human umbilical vein endothelial cells (HUVECs) were used for assays involving cell proliferation, scratch wound healing, and tube formation. To test the effects in vivo, streptozotocin-induced diabetic rats were established. Two weeks after the procedure, histological analysis was used to measure wound-healing effects, and the neovascularization was evaluated as well. Our findings demonstrated that DFO-Exos activate the PI3K/AKT signaling pathway via miR-126 mediated PTEN downregulation to stimulate angiogenesis in vitro. This contributed to enhanced wound healing and angiogenesis in streptozotocin-induced diabetic rats in vivo. Our results suggest that, in cell-free therapies, exosomes derived from DFO preconditioned stem cells manifest increased proangiogenic ability.


Sign in / Sign up

Export Citation Format

Share Document