scholarly journals Disconnected Forbidden Subgraphs, Toughness and Hamilton Cycles

2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Zh. G. Nikoghosyan

In 1974, Goodman and Hedetniemi proved that every 2-connected -free graph is hamiltonian. This result gave rise many other conditions for Hamilton cycles concerning various pairs and triples of forbidden connected subgraphs under additional connectivity conditions. In this paper we investigate analogous problems when forbidden subgraphs are disconnected which affects more global structures in graphs such as tough structures instead of traditional connectivity structures. In 1997, it was proved that a single forbidden connected subgraph in 2-connected graphs can create only a trivial class of hamiltonian graphs (complete graphs) with . In this paper we prove that a single forbidden subgraph can create a non trivial class of hamiltonian graphs if is disconnected: every -free graph either is hamiltonian or belongs to a well defined class of non hamiltonian graphs; every 1-tough -free graph is hamiltonian. We conjecture that every 1-tough -free graph is hamiltonian and every 1-tough -free graph is hamiltonian.

2021 ◽  
Vol 37 (3) ◽  
pp. 839-866
Author(s):  
Wei Zheng ◽  
Hajo Broersma ◽  
Ligong Wang

AbstractMotivated by several conjectures due to Nikoghosyan, in a recent article due to Li et al., the aim was to characterize all possible graphs H such that every 1-tough H-free graph is hamiltonian. The almost complete answer was given there by the conclusion that every proper induced subgraph H of $$K_1\cup P_4$$ K 1 ∪ P 4 can act as a forbidden subgraph to ensure that every 1-tough H-free graph is hamiltonian, and that there is no other forbidden subgraph with this property, except possibly for the graph $$K_1\cup P_4$$ K 1 ∪ P 4 itself. The hamiltonicity of 1-tough $$K_1\cup P_4$$ K 1 ∪ P 4 -free graphs, as conjectured by Nikoghosyan, was left there as an open case. In this paper, we consider the stronger property of pancyclicity under the same condition. We find that the results are completely analogous to the hamiltonian case: every graph H such that any 1-tough H-free graph is hamiltonian also ensures that every 1-tough H-free graph is pancyclic, except for a few specific classes of graphs. Moreover, there is no other forbidden subgraph having this property. With respect to the open case for hamiltonicity of 1-tough $$K_1\cup P_4$$ K 1 ∪ P 4 -free graphs we give infinite families of graphs that are not pancyclic.


10.37236/6190 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Shuya Chiba ◽  
Jun Fujisawa ◽  
Michitaka Furuya ◽  
Hironobu Ikarashi

Let $\mathcal{H}$ be a family of connected graphs. A graph $G$ is said to be $\mathcal{H}$-free if $G$ does not contain any members of $\mathcal{H}$ as an induced subgraph. Let $\mathcal{F}(\mathcal{H})$ be the family of connected $\mathcal{H}$-free graphs. In this context, the members of $\mathcal{H}$ are called forbidden subgraphs.In this paper, we focus on two pairs of forbidden subgraphs containing a common graph, and compare the classes of graphs satisfying each of the two forbidden subgraph conditions. Our main result is the following: Let $H_{1},H_{2},H_{3}$ be connected graphs of order at least three, and suppose that $H_{1}$ is twin-less. If the symmetric difference of $\mathcal{F}(\{H_{1},H_{2}\})$ and $\mathcal{F}(\{H_{1},H_{3}\})$ is finite and the tuple $(H_{1};H_{2},H_{3})$ is non-trivial in a sense, then $H_{2}$ and $H_{3}$ are obtained from the same vertex-transitive graph by successively replacing a vertex with a clique and joining the neighbors of the original vertex and the clique. Furthermore, we refine a result in [Combin. Probab. Comput. 22 (2013) 733–748] concerning forbidden pairs.


2012 ◽  
Vol 21 (1-2) ◽  
pp. 149-158 ◽  
Author(s):  
JUN FUJISAWA ◽  
AKIRA SAITO

In this paper, we consider pairs of forbidden subgraphs that imply the existence of a 2-factor in a graph. For d ≥ 2, let d be the set of connected graphs of minimum degree at least d. Let F1 and F2 be connected graphs and let be a set of connected graphs. Then {F1, F2} is said to be a forbidden pair for if every {F1, F2}-free graph in of sufficiently large order has a 2-factor. Faudree, Faudree and Ryjáček have characterized all the forbidden pairs for the set of 2-connected graphs. We first characterize the forbidden pairs for 2, which is a larger set than the set of 2-connected graphs, and observe a sharp difference between the characterized pairs and those obtained by Faudree, Faudree and Ryjáček. We then consider the forbidden pairs for connected graphs of large minimum degree. We prove that if {F1, F2} is a forbidden pair for d, then either F1 or F2 is a star of order at most d + 2. Ota and Tokuda have proved that every $K_{1, \lfloor\frac{d+2}{2}\rfloor}$-free graph of minimum degree at least d has a 2-factor. These results imply that for k ≥ d + 2, no connected graphs F except for stars of order at most d + 2 make {K1,k, F} a forbidden pair for d, while for $k\le \bigl\lfloor\frac{d+2}{2} \bigr\rfloor$ every connected graph F makes {K1,k, F} a forbidden pair for d. We consider the remaining range of $\bigl\lfloor\frac{d+2}{2} \bigr\rfloor < k < d+2$, and prove that only a finite number of connected graphs F make {K1,k, F} a forbidden pair for d.


10.37236/502 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Shinya Fujita ◽  
Colton Magnant

In this note, we improve upon some recent results concerning the existence of large monochromatic, highly connected subgraphs in a $2$-coloring of a complete graph. In particular, we show that if $n\ge 6.5(k - 1)$, then in any $2$-coloring of the edges of $K_{n}$, there exists a monochromatic $k$-connected subgraph of order at least $n - 2(k - 1)$. Our result improves upon several recent results by a variety of authors.


2020 ◽  
Vol 30 (03) ◽  
pp. 2040007
Author(s):  
Cheng-Kuan Lin ◽  
Eddie Cheng ◽  
László Lipták

The connectivity of a graph [Formula: see text], [Formula: see text], is the minimum number of vertices whose removal disconnects [Formula: see text], and the value of [Formula: see text] can be determined using Menger’s theorem. It has long been one of the most important factors that characterize both graph reliability and fault tolerability. Two extensions to the classic notion of connectivity were introduced recently: structure connectivity and substructure connectivity. Let [Formula: see text] be isomorphic to any connected subgraph of [Formula: see text]. The [Formula: see text]-structure connectivity of [Formula: see text], denoted by [Formula: see text], is the cardinality of a minimum set [Formula: see text] of connected subgraphs in [Formula: see text] such that every element of [Formula: see text] is isomorphic to [Formula: see text], and the removal of [Formula: see text] disconnects [Formula: see text]. The [Formula: see text]-substructure connectivity of [Formula: see text], denoted by [Formula: see text], is the cardinality of a minimum set [Formula: see text] of connected subgraphs in [Formula: see text] whose removal disconnects [Formula: see text] and every element of [Formula: see text] is isomorphic to a connected subgraph of [Formula: see text]. The family of hypercube-like networks includes many well-defined network architectures, such as hypercubes, crossed cubes, twisted cubes, and so on. In this paper, both the structure and substructure connectivity of hypercube-like networks are studied with respect to the [Formula: see text]-star [Formula: see text] structure, [Formula: see text], and the [Formula: see text]-cycle [Formula: see text] structure. Moreover, we consider the relationships between these parameters and other concepts.


2013 ◽  
Vol 22 (5) ◽  
pp. 733-748 ◽  
Author(s):  
SHINYA FUJITA ◽  
MICHITAKA FURUYA ◽  
KENTA OZEKI

Let $\mathcal{H}$ be a set of connected graphs. A graph G is said to be $\mathcal{H}$-free if G does not contain any element of $\mathcal{H}$ as an induced subgraph. Let $\mathcal{F}_{k}(\mathcal{H})$ be the set of k-connected $\mathcal{H}$-free graphs. When we study the relationship between forbidden subgraphs and a certain graph property, we often allow a finite exceptional set of graphs. But if the symmetric difference of $\mathcal{F}_{k}(\mathcal{H}_{1})$ and $\mathcal{F}_{k}(\mathcal{H}_{2})$ is finite and we allow a finite number of exceptions, no graph property can distinguish them. Motivated by this observation, we study when we obtain a finite symmetric difference. In this paper, our main aim is the following. If $|\mathcal{H}|\leq 3$ and the symmetric difference of $\mathcal{F}_{1}(\{H\})$ and $\mathcal{F}_{1}(\mathcal{H})$ is finite, then either $H\in \mathcal{H}$ or $|\mathcal{H}|=3$ and H=C3. Furthermore, we prove that if the symmetric difference of $\mathcal{F}_{k}(\{H_{1}\})$ and $\mathcal{F}_{k}(\{H_{2}\})$ is finite, then H1=H2.


2013 ◽  
Vol 30 (6) ◽  
pp. 1607-1614 ◽  
Author(s):  
Yingqiu Yang ◽  
Liang Sun

1988 ◽  
Vol 44 (2) ◽  
pp. 177-186 ◽  
Author(s):  
J.A Bondy ◽  
M Kouider

1992 ◽  
Vol 110 (1-3) ◽  
pp. 229-249 ◽  
Author(s):  
Yongjin Zhu ◽  
Hao Li

Sign in / Sign up

Export Citation Format

Share Document