scholarly journals The Era of Kilometer-Scale Neutrino Detectors

2013 ◽  
Vol 2013 ◽  
pp. 1-20 ◽  
Author(s):  
Francis Halzen ◽  
Uli Katz

Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. KM3NeT, an instrument that aims to exploit several cubic kilometers of the deep Mediterranean sea as its detector medium, is in its final design stages. The scientific missions of these instruments include searching for sources of cosmic rays and for dark matter, observing Galactic supernova explosions, and studying the neutrinos themselves. Identifying the accelerators that produce Galactic and extragalactic cosmic rays has been a priority mission of several generations of high-energy gamma-ray and neutrino telescopes; success has been elusive so far. Detecting the gamma-ray and neutrino fluxes associated with cosmic rays reaches a new watershed with the completion of IceCube, the first neutrino detector with sensitivity to the anticipated fluxes. In this paper, we will first revisit the rationale for constructing kilometer-scale neutrino detectors. We will subsequently recall the methods for determining the arrival direction, energy and flavor of neutrinos, and will subsequently describe the architecture of the IceCube and KM3NeT detectors.

1990 ◽  
Vol 123 ◽  
pp. 537-541
Author(s):  
Carl E. Fichtel ◽  
Mehmet E. Ozel ◽  
Robert G. Stone

AbstractPresent and future measurement of the Large Magellanic Cloud (LMC) particularly in the radio and high energy gamma ray range offer the possibility of understanding the density and distribution of the cosmic rays in a galaxy other than our own and the role that they play in galactic dynamic balance. After a study of the consistency of the measurements and interpretation of the synchrotron radiation from our own galaxy, the cosmic ray distribution for the LMC is calculated under the assumption that the cosmic ray nucleon to electron ratio is the same and the relation to the magnetic fields are the same, although the implications of alternatives are discussed. It is seen that the cosmic ray density level appears to be similar to that in our own galaxy, but varying in position in a manner generally consistent with the concept of correlation with the matter on a broad scale.


2003 ◽  
Vol 214 ◽  
pp. 382-386
Author(s):  
Masato Takita

Sub-TeV and TeV energy gamma-ray astronomy reveals non-thermal gamma-ray pictures of our universe and serve as a probe to understand the origin, acceleration and propagation of cosmic rays. Recent status of ground-based high-energy gamma-ray astronomy is reviewed.


2018 ◽  
Vol 191 ◽  
pp. 01007 ◽  
Author(s):  
N. Budnev ◽  
I. Astapov ◽  
P. Bezyazeekov ◽  
V. Boreyko ◽  
A. Borodin ◽  
...  

The physics motivations and advantages of the new TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) detector are presented. TAIGA aims at gamma-ray astronomy at energies from a few TeV to several PeV, as well as cosmic ray physics from 100 TeV to several EeV. For the energy range 30 – 200 TeV the sensitivity of 10 km2 area TAIGA array for the detection of local sources is expected to be 5 × 10-14 erg cm-2 sec-1 for 300 h of observations. Reconstruction of the given EAS energy, incoming direction and its core position, based on the timing TAIGA-HiSCORE data, allows one to increase a distance between the IACTs up to 600-1000 m. The low investments together with the high sensitivity for energies ≥ 30-50 TeV make this pioneering technique very attractive for exploring the galactic PeVatrons and cosmic rays. At present the TAIGA first stage has been constructed in Tunka valley, 50 km West from the Lake Baikal. The first experimental results of the TAIGA first stage are presented.


1991 ◽  
Vol 38 (2) ◽  
pp. 553-558
Author(s):  
H.L. Edwards ◽  
P.L. Nolan ◽  
E.B. Hughes ◽  
Y.C. Lin ◽  
D.G. Koch ◽  
...  

Author(s):  
Eli Waxman

The construction of large-volume detectors of high energy, greater than 1 TeV, neutrinos is mainly driven by the search for extragalactic neutrino sources. The existence of such sources is implied by the observations of ultra-high-energy, greater than or equal to 10 19  eV, cosmic rays, the origin of which is a mystery. In this lecture, I briefly discuss the expected extragalactic neutrino signal and the current state of the experimental efforts. Neutrino emission from gamma-ray bursts (GRBs), which are probably sources of both high-energy protons and neutrinos, is discussed in some detail. The detection of the predicted GRB neutrino signal, which may become possible in the coming few years, will allow one to identify the sources of ultra-high-energy cosmic rays and to resolve open questions related to the underlying physics of GRB models. Moreover, detection of GRB neutrinos will allow one to test for neutrino properties (e.g. flavour oscillations and coupling to gravity) with an accuracy many orders of magnitude better than is currently possible.


Author(s):  
Francis Halzen

The IceCube neutrino telescope discovered PeV-energy neutrinos originating beyond our Galaxy with an energy flux that is comparable to that of GeV-energy gamma rays and EeV-energy cosmic rays. These neutrinos provide the only unobstructed view of the cosmic accelerators that power the highest energy radiation reaching us from the universe. We will review the results from IceCube’s first decade of operations, emphasizing the measurement of the diffuse multiflavored neutrino flux from the universe and the identification of the supermassive black hole TXS [Formula: see text] as a source of cosmic neutrinos and, therefore, cosmic rays. We will speculate on the lessons learned for multimessenger astronomy, among them that extragalactic neutrino sources may be a relatively small subset of the cosmic accelerators observed in high-energy gamma rays and that these may be gamma-ray-obscured at the times that they emit neutrinos.


Sign in / Sign up

Export Citation Format

Share Document