scholarly journals pH Responsive Self-Assembly of Cucurbit[7]urils and Polystyrene-Block-Polyvinylpyridine Micelles for Hydrophobic Drug Delivery

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Basem A. Moosa ◽  
Afnan Mashat ◽  
Wengang Li ◽  
Karim Fhayli ◽  
Niveen M. Khashab

Polystyrene-block-polyvinylpyridine (PS-b-P4VP) polypseudorotaxanes with cucurbit[7]urils (CB[7]) were prepared from water soluble PS-b-P4VPH+polymer and CB[7] in aqueous solution at room temperature. At acidic and neutral pH, the pyridinium block of PS-b-P4VP is protonated (PS-b-P4VPH+) pushing CB[7] to preferably host the P4VP block. At basic pH (pH 8), P4VP is not charged and thus is not able to strongly complex CB[7]. This phenomenon was verified further by monitoring the release of pyrene, a hydrophobic cargo model, from a PS-b-P4VPH+/CB[7] micellar membrane. Release study of UV active pyrene from the membrane at different pH values revealed that the system is only operational under basic conditions and that the host-guest interaction of CB[7] with P4VPH+significantly slows down cargo release.

2021 ◽  
Author(s):  
Ping-Ru Su ◽  
Tao Wang ◽  
Pan-Pan Zhou ◽  
Xiao-Xi Yang ◽  
Xiao-Xia Feng ◽  
...  

Abstract Design and engineering of highly efficient emitting materials with assembly-induced luminescence, such as room temperature phosphorescence (RTP) and aggregation-induced emission (AIE), have stimulated extensive efforts. Here, we propose a new strategy to obtain size-controlled Eu3+-complex nanoparticles (Eu-NPs) with self-assembly induced luminescence (SAIL) characteristics without encapsulation or hybridization. Compared with previous RTP or AIE materials, the SAIL phenomena of increased luminescence intensity and lifetime in aqueous solution for the proposed Eu-NPs are due to the combined effect of self-assembly in confining the molecular motion and shielding the water quenching. As a proof of concept, we also show that this system can be further applied in bioimaging, temperature measurement and HClO sensing. The SAIL activity of the rare-earth (RE) system proposed here offers a further step forward on the roadmap for the development of RE light conversion systems and their integration in bioimaging and therapy applications.


2015 ◽  
Vol 51 (20) ◽  
pp. 4188-4191 ◽  
Author(s):  
Jiong Zhou ◽  
Guocan Yu ◽  
Li Shao ◽  
Bin Hua ◽  
Feihe Huang

The first water-soluble biphen[3]arene was synthesized. Its pH-responsive host–guest complexation with secondary ammonium salts in water was investigated. This novel recognition motif was further used in controllable self-assembly and controlled release.


AIChE Journal ◽  
2008 ◽  
Vol 54 (11) ◽  
pp. 2979-2989 ◽  
Author(s):  
Youqing Shen ◽  
Yihong Zhan ◽  
Jianbin Tang ◽  
Peisheng Xu ◽  
Patrick A. Johnson ◽  
...  

2013 ◽  
Vol 750-752 ◽  
pp. 1476-1479 ◽  
Author(s):  
Bin Liu ◽  
Guan Hui Gao ◽  
Peng Liu ◽  
Hu Qiang Yi ◽  
Wei Wei ◽  
...  

In this paper, we successfully designed a pH-responsive micelles based on hybrid polypeptide copolymers of poly (L-lysine-4-Azepan-1-yl-butyric)-b-poly (ethylene glycol)-b-poly (L-lysine-Diisopropylamide)-b-poly (L-leucine) (PLL(A)-PEG-PLL(B)-PLLeu) for efficient drug delivery. This pH-responsive nanoparticles were able to response to different pH values (pH=6.8 and 5.5). In vitro, these nanoparticles exhibited a stable and evenly distributed approximately 51 nm, a slightly positive potential about 10.3 mv at pH 7.4, which were crucial for the circulation of drugs in blood. While size and potential were about 130 nm and 34.7 mv at pH 6.8, which were good for drugs in membrane. Furthermore, the loading capability of DOX was up to 11.3%, and the pH-responsive release efficiency reached to 68.3% at pH 5.5. The results indicated that these micelles had huge potential application in cancer delivery.


RSC Advances ◽  
2018 ◽  
Vol 8 (55) ◽  
pp. 31581-31587 ◽  
Author(s):  
Lin Wang ◽  
Xuefeng Shi ◽  
Jian Zhang ◽  
Yuejun Zhu ◽  
Jinben Wang

Supramolecular hydrogel, AGC16/NTS, was used to encapsulate hydrophobic drug curcumin (Cur), constructing a pH-responsive drug delivery system; the uptake of released Cur by cancer cells also occurred.


2016 ◽  
Vol 55 (9) ◽  
pp. 4650-4663 ◽  
Author(s):  
Clive Yik-Sham Chung ◽  
Steve Po-Yam Li ◽  
Kenneth Kam-Wing Lo ◽  
Vivian Wing-Wah Yam

2016 ◽  
Vol 4 (15) ◽  
pp. 2691-2696 ◽  
Author(s):  
Yong Yao ◽  
Yang Wang ◽  
Ruibo Zhao ◽  
Li Shao ◽  
Ruikang Tang ◽  
...  

A decomposable and intracellular pH-responsive drug delivery system by immobilizing a water-soluble pillar[5]arene onto hollow mesoporous nanoparticles through host–guest complexation was successfully prepared and its application in controlled drug delivery in vitro and in vivo was also investigated.


Sign in / Sign up

Export Citation Format

Share Document