scholarly journals Comparison of Octopus Semi-Automated Kinetic Perimetry and Humphrey Peripheral Static Perimetry in Neuro-Ophthalmic Cases

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Fiona J. Rowe ◽  
Carmel Noonan ◽  
Melanie Manuel

Aim. To compare semikinetic perimetry (SKP) on Octopus 900 perimetry to a peripheral static programme with Humphrey automated perimetry. Methods. Prospective cross-section study comparing Humphrey full field (FF) 120 two zone programme to a screening protocol for SKP on Octopus perimetry. Results were independently graded for presence/absence of field defect plus type and location of defect. Results. 64 patients (113 eyes) underwent dual perimetry assessment. Mean duration of assessment for SKP was 4.54 minutes ±0.18 and for FF120 (). 80% of results were correctly matched for normal or abnormal visual fields using the I4e target versus FF120, and 73.5% were correctly matched using the I2e target versus FF120. When comparing Octopus results with combined I4e and I2e isopters to the FF120 result, a match for normal or abnormal fields was recorded in 87%. Conclusions. Humphrey perimetry test duration was generally longer than Octopus SKP. In the absence of kinetic perimetry, peripheral static suprathreshold programme options such as FF120 may be useful for detection of visual field defects. However, statokinetic dissociation may occur. Octopus SKP utilising both I4e and I2e targets provides detailed information of both the defect depth and size and may provide a more representative view of the actual visual field defect.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Fiona J. Rowe ◽  
Alison Rowlands

Purpose. To determine diagnostic accuracy of kinetic visual field assessment by Octopus 900 perimetry compared with Goldmann perimetry.Methods. Prospective cross section evaluation of 40 control subjects with full visual fields and 50 patients with known visual field loss. Comparison of test duration and area measurement of isopters for Octopus 3, 5, and 10°/sec stimulus speeds. Comparison of test duration and type of visual field classification for Octopus versus Goldmann perimetry. Results were independently graded for presence/absence of field defect and for type and location of defect. Statistical evaluation comprised of ANOVA and paired t test for evaluation of parametric data with Bonferroni adjustment. Bland Altman and Kappa tests were used for measurement of agreement between data.Results. Octopus 5°/sec perimetry had comparable test duration to Goldmann perimetry. Octopus perimetry reliably detected type and location of visual field loss with visual fields matched to Goldmann results in 88.8% of results(K=0.775).Conclusions. Kinetic perimetry requires individual tailoring to ensure accuracy. Octopus perimetry was reproducible for presence/absence of visual field defect. Our screening protocol when using Octopus perimetry is 5°/sec for determining boundaries of peripheral isopters and 3°/sec for blind spot mapping with further evaluation of area of field loss for defect depth and size.


Author(s):  
María Cecilia Moreno ◽  
Brenda Giagante ◽  
Patricia Saidon ◽  
Silvia Kochen ◽  
Jorge Benozzi ◽  
...  

ABSTRACT:Objective:The aim of the present study was to assess visual alterations in a population of Argentine patients treated with the antiepileptic drug vigabatrin.Methods:Twenty patients receiving vigabatrin and 15 patients receiving carbamazepine were examined with automated perimetry using a Humphrey 120-point full screening strategy. In addition, scotopic flash electroretinograms were performed.Results:Of 20 patients treated with vigabatrin, two were unable to cooperate with testing. Of the remaining 18 patients, all but two showed at least one non-detected point inside the central 40° of the visual field of each eye. Of the 15 carbamazepine-treated patients, three were unable to perform the study. None of the remaining 12 patients showed visual field defects. Both a- and b-wave amplitudes of the scotopic electroretinogram were significantly reduced in 12 patients receiving vigabatrin.Conclusions:Visual field defects among patients on vigabatrin therapy may occur with a higher frequency than previously recognized. The Humphrey 120-points full field screening test and electroretinography are useful tools to assess the visual dysfunction associated with vigabatrin.


Author(s):  
Thomas R. Hedges III

Automated perimetry has changed visual field testing considerably in recent years. What was considered an art has become an exercise in interpreting a set of data points obtained mechanically. Automated perimetry saves ophthalmologists time, which ideally should allow for more visual fields to be obtained on patients with unexplained vision loss. However, one must still keep in mind that automated perimetry still depends on the subjective responses from the patient. More important, automated perimetry has made interpretation of visual field defects, especially those due to occipital lesions, more difficult. For example, macular sparing may not be reflected, especially with programs limited to the central 24° or 30°. A 10° field may be required to show macular sparing. Also, sparing or involvement of the temporal crescent will not be shown with 24° or 30° visual fields. The limitation of most programs may lead to the appearance of incongruity when in fact the field is indeed congruous. Sometimes, a small homonymous hemianopic scotoma will be detected when one eye is tested but will be completely missed when the other eye is tested, giving the false impression that the visual loss is monocular. This is especially problematic if the patient also falsely interprets his or her homonymous loss of vision as monocular. Such individuals may complain of loss of vision in one eye when in fact it is one half of their visual field that is defective. The strategy of automated testing on either side the vertical and horizontal meridians may lead to the false impression that field defects respect the vertical or horizontal meridian when they do not. Automated perimetry should make it possible to test more patients with unexplained vision loss, but all automated visual fields must be interpreted with caution and, when necessary, substantiated with some other method, such as the tangent screen, which remains the most powerful method of detecting the size, shape, and density of visual field defects. Because most ophthalmologists no longer use tangent screen testing, at least an Amlser grid should be used to qualify the nature of a paracentral visual field defect.


2021 ◽  
Vol 6 (1) ◽  
pp. e000429
Author(s):  
Michael Christian Leitner ◽  
Florian Hutzler ◽  
Sarah Schuster ◽  
Lorenzo Vignali ◽  
Patrick Marvan ◽  
...  

ObjectiveSeveral studies report evidence for training-related neuroplasticity in the visual cortex, while other studies suggest that improvements simply reflect inadequate eye fixation control during perimetric prediagnostics and postdiagnostics.Methods and analysisTo improve diagnostics, a new eye-tracking-based methodology for visual field analysis (eye-tracking-based visual field analysis (EFA)) was developed. The EFA is based on static automated perimetry and additionally takes individual eye movements in real time into account and compensates for them. In the present study, an evaluation of the EFA with the help of blind spots of 58 healthy participants and the individual visual field defects of 23 clinical patients is provided. With the help of the EFA, optical coherence tomography, Goldmann perimetry and a Humphrey field analyser, these natural and acquired scotomas were diagnosed and the results were compared accordingly.ResultsThe EFA provides a SE of measurement of 0.38° for the right eye (OD) and 0.50° for the left eye (OS), leading to 0.44° of visual angle for both eyes (OU). Based on participants’ individual results, the EFA provides disattenuated correlation (validity) of 1.00 for both OD and OS. Results from patients suffering from cortical lesions and glaucoma further indicate that the EFA is capable of diagnosing acquired scotoma validly and is applicable for clinical use.ConclusionOutcomes indicate that the EFA is highly reliable and precise in diagnosing individual shape and location of scotoma and capable of recording changes of visual field defects (after intervention) with unprecedented precision. Test duration is comparable to established instruments and due to the high customisability of the EFA, assessment duration can be shortened by adapting the diagnostic procedure to the patients’ individual visual field characteristics. Therefore, the saccade-compensating methodology enables researchers and healthcare professionals to rule out eye movements as a source of inaccuracies in pre-, post-, and follow-up assessments.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaoxiao Ma ◽  
Li Tang ◽  
Xiaoming Chen ◽  
Liuzhi Zeng

Abstract Background Existing evidence suggests that visual field defect in eyes with glaucoma significantly varies between individuals. The following study compared the central visual field defects with the peripheral visual field defects in patients with suspect glaucoma and primary open-angle glaucoma (POAG) and investigated whether using the central visual field test alone could result in loss of clinically valuable information. Methods In this prospective observational study, 167 eyes from 89 patients with suspect glaucoma or POAG were first examined with static automated perimetry (SAP), followed by a peripheral visual field test on Octopus 900 perimeter (Haag-Streit, Koeniz, Switzerland). The peripheral visual field test was performed by “Auto Kinetic Perimetry” program, in which Goldmann III4e stimuli randomly moved along 16 vectors at a constant angular velocity of 5 deg/s. Results Glaucomatous peripheral visual field defects were seen in 18% of the eyes with a normal central visual field. In addition, 86% of glaucoma patients with moderate-to-severe central visual field defects had corresponding peripheral visual field defects in the form of localized or diffuse depression of the isopters. Furthermore, a moderate correlation was found between the central and peripheral visual fields. The median test duration was 71 s for the peripheral test and 803 s for the central test (p < 0.001). Conclusions Our study demonstrated the diversity of glaucomatous visual field defects, as well as the possibility of losing the clinically valuable information due to focusing on the central visual field test alone. The peripheral kinetic perimetry is clinically feasible to complement the central static perimetry for a comprehensive assessment of visual function in glaucoma patients.


Visual Fields: Examination and Interpretation, 3rd edition contains revisions and updates of earlier material as well as a discussion of newer techniques for assessing visual field disorders. The book begins with a short history of the field of perimetry and goes on to present basic clinical aspects of examination and diagnosis of visual field defects in the optic nerve, optic disc, chorioretina, optic chiasm, optic tract, lateral geniculate field bodies, and the calcarine complex. Additional aspects of visual field examination are explored including those of monocular, binocular, and junctional field defects, congruity vs. incongruity, macular sparing vs. macular splitting, density, wedge-shaped homonymous field loss, and monocular temporal crescent. Various new techniques of automated perimetry are also considered including SITA, FASTPAC, and SWAP. This volume provides a very useful overview of the techniques of visual field examination in a number of eye disorders and will be of interest to all ophthalmologists, neuro-opthalmologists, retina specialists, and optometrists.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Courtney M. Crawford ◽  
Bruce A. Rivers ◽  
Mark Nelson

Objective. To describe a case of acute zonal occult outer retinopathy (AZOOR) in an active duty patient.Methods. In this paper we studied fundus photographs, optical coherence tomograph, Humphrey visual field 30-2, fundus autofluorescence images, fluorescein angiograms, and electroretinography.Results. Exam findings on presentation: a 34-year-old American Indian female presented with bilateral photopsias, early RPE irregularity, and an early temporal visual field defect. Progression RPE damage and visual field defect along with ERG findings support final diagnosis of AZOOR.Conclusion. AZOOR may initially be identified as a broader category of disease called the “AZOOR complex of disorders”. Specific visual field defects, ERG results, and clinical exam findings will help distinguish AZOOR from other similar disorders.


2021 ◽  
pp. 1-11
Author(s):  
Visish M. Srinivasan ◽  
Phiroz E. Tarapore ◽  
Stefan W. Koester ◽  
Joshua S. Catapano ◽  
Caleb Rutledge ◽  
...  

OBJECTIVE Rare arteriovenous malformations (AVMs) of the optic apparatus account for < 1% of all AVMs. The authors conducted a systematic review of the literature for cases of optic apparatus AVMs and present 4 cases from their institution. The literature is summarized to describe preoperative characteristics, surgical technique, and treatment outcomes for these lesions. METHODS A comprehensive search of the English-language literature was performed in accordance with established Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to identify all published cases of AVM in the optic apparatus in the PubMed, Web of Science, and Cochrane databases. The authors also searched their prospective institutional database of vascular malformations for such cases. Data regarding the clinical and radiological presentation, visual acuity, visual fields, extent of resection, and postoperative outcomes were gathered. RESULTS Nine patients in the literature and 4 patients in the authors’ single-surgeon series who fit the inclusion criteria were identified. The median age at presentation was 29 years (range 8–39 years). Among these patients, 11 presented with visual disturbance, 9 with headache, and 1 with multiple prior subarachnoid hemorrhages; the AVM in 1 case was found incidentally. Four patients described prior symptoms of headache or visual disturbance consistent with sentinel events. Visual acuity was decreased from baseline in 10 patients, and 11 patients had visual field defects on formal visual field testing. The most common visual field defect was temporal hemianopia, found in one or both eyes in 7 patients. The optic chiasm was affected in 10 patients, the hypothalamus in 2 patients, the optic nerve (unilaterally) in 8 patients, and the optic tract in 2 patients. Six patients underwent gross-total resection; 6 patients underwent subtotal resection; and 1 patient underwent craniotomy, but no resection was attempted. Postoperatively, 9 of the patients had improved visual function, 1 had no change, and 3 had worse visual acuity. Eight patients demonstrated improved visual fields, 1 had no change, and 4 had narrowed fields. CONCLUSIONS AVMs of the optic apparatus are rare lesions. Although they reside in a highly eloquent region, surgical outcomes are generally good; the majority of patients will see improvement in their visual function postoperatively. Microsurgical technique is critical to the successful removal of these lesions, and preservation of function sometimes requires subtotal resection of the lesion.


1992 ◽  
Vol 2 (4) ◽  
pp. 169-174 ◽  
Author(s):  
J. Flammer ◽  
Y. Kitazawa ◽  
L. Bonomi ◽  
B. Mills ◽  
M. Fsadni ◽  
...  

The influences of Carteolol and Timolol eye drops on intraocular pressure (IOP) and visual fields were compared in a multi-center, double-masked, prospective study. Two-hundred and forty eyes of 120 patients were initially included in the study, and 142 eyes of 72 patients fulfilled all the criteria for final statistical analysis. Both drugs significantly reduced IOP. The visual fields in both treatment groups did not change during one year of treatment. In both groups some patients improved slightly, and others deteriorated slightly. This indicates that locally applied beta-blockers may efficiently stop further progression of visual field defects in cases with increased IOP and early visual field damage. There was no difference between Carteolol and Timolol in this regard. The side effects were minimal, and there were no differences in their frequency or intensity in the two treatment groups.


Author(s):  
George Shafranov

Standard automated perimetry is a standard method of measuring peripheral visual function. Automated static perimetry gained wide acceptance among clinicians due to the test’s high reproducibility and standardization and ability to store, exchange, and statistically analyze digital data. Advances in the computerized visual field assessment have contributed to our understanding of the role that field of vision plays in clinical evaluation and management of patients. The Humphrey Visual Field Analyzer/HFA II-i is the most commonly used automated perimeter in the United States, and the examples in this chapter have been obtained with this instrument. Aubert and Förster in the 1860s developed the arc perimeter, which led to the mapping of peripheral neurologic visual field abnormalities and advanced glaucomatous field defects. Analysis of the central visual field was not seen as clinically important by most clinicians until 1889, when Bjerrum described a detected arcuate paracentral scotoma. Later, Traquair further contributed to kinetic perimetry on the tangent screen. In 1893, Groenouw proposed the term “isopter” for lines with the same sensitivity on a perimetry chart. Rønne further developed kinetic isopter perimetry in 1909 and described the nasal step in glaucoma. Although the first bowl perimeter was introduced in 1872 by Scherk, due to problems with achieving even illumination on the screen, it did not become popular. The version of the bowl perimeter introduced by Goldmann in 1945 became widely accepted and is a significant contribution to clinical perimetry. The Goldmann perimeter incorporated a projected stimulus on an illuminated bowl, with standardization of background illumination as well as size and intensity of the stimulus, and allowed effective use of both static and kinetic techniques. For these reasons, the Goldmann instrument has remained the clinical standard throughout the world until widespread acceptance of automated perimetry. Harms and Aulhorn later designed the Tübingen perimeter with a bowl-type screen exclusively for the measurement of static threshold fields, using stationary test objects with variable light intensity. While excellent threshold measurements were possible with this instrument, the time and effort involved in such measurements prevented this perimeter from becoming widely used.


Sign in / Sign up

Export Citation Format

Share Document