scholarly journals Efficacy of Ethanol Extract ofFructus lyciiand Its Constituents Lutein/Zeaxanthin in Protecting Retinal Pigment Epithelium Cells against Oxidative Stress:In VivoandIn VitroModels of Age-Related Macular Degeneration

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xinrong Xu ◽  
Li Hang ◽  
Binglin Huang ◽  
Yuanhua Wei ◽  
Shizhong Zheng ◽  
...  

Age-related macular degeneration (AMD) is a major cause of blindness worldwide. Oxidative stress plays a large role in the pathogenesis of AMD. The present study was to evaluate the effects ofFructus lyciiethanol extract on AMD in mice and to investigate whether combination of lutein and zeaxanthin, two carotenoid pigments inFructus lycii, could protect human retinal pigment epithelial ARPE-19 cells treated with hydrogen peroxide (H2O2)in vitro. We found that severe sediment beneath retinal pigment epithelium and thickened Bruch membrane occurred in AMD mice. However,Fructus lyciiethanol extract improved the histopathologic changes and decreased the thickness of Bruch membrane. Furthermore, the gene and protein expression of cathepsin B and cystatin C was upregulated in AMD mice but was eliminated byFructus lyciiethanol extract. Investigationsin vitroshowed that ARPE-19 cell proliferation was suppressed by H2O2. However, lutein/zeaxanthin not only stimulated cell proliferation but also abrogated the enhanced expression of MMP-2 and TIMP-1 in H2O2-treated ARPE-19 cells. These data collectively suggested thatFructus lyciiethanol extract and its active components lutein/zeaxanthin had protective effects on AMDin vivoandin vitro, providing novel insights into the beneficial role ofFructus lyciifor AMD therapy.

2021 ◽  
Vol 22 (16) ◽  
pp. 8387
Author(s):  
Alexa Klettner ◽  
Johann Roider

(1) Background: Inflammation is a major pathomechanism in the development and progression of age-related macular degeneration (AMD). The retinal pigment epithelium (RPE) may contribute to retinal inflammation via activation of its Toll-like receptors (TLR). TLR are pattern recognition receptors that detect the pathogen- or danger-associated molecular pattern. The involvement of TLR activation in AMD is so far not understood. (2) Methods: We performed a systematic literature research, consulting the National Library of Medicine (PubMed). (3) Results: We identified 106 studies, of which 54 were included in this review. Based on these studies, the current status of TLR in AMD, the effects of TLR in RPE activation and of the interaction of TLR activated RPE with monocytic cells are given, and the potential of TLR activation in RPE as part of the AMD development is discussed. (4) Conclusion: The activation of TLR2, -3, and -4 induces a profound pro-inflammatory response in the RPE that may contribute to (long-term) inflammation by induction of pro-inflammatory cytokines, reducing RPE function and causing RPE cell degeneration, thereby potentially constantly providing new TLR ligands, which could perpetuate and, in the long run, exacerbate the inflammatory response, which may contribute to AMD development. Furthermore, the combined activation of RPE and microglia may exacerbate neurotoxic effects.


2012 ◽  
Vol 153 (1) ◽  
pp. 120-127.e2 ◽  
Author(s):  
Elsbeth J.T. van Zeeburg ◽  
Kristel J.M. Maaijwee ◽  
Tom O.A.R. Missotten ◽  
Heinrich Heimann ◽  
Jan C. van Meurs

Sign in / Sign up

Export Citation Format

Share Document