scholarly journals Induced Graphoidal Decompositions in Product Graphs

2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Mayamma Joseph ◽  
I. Sahul Hamid

Let be a nontrivial, simple, finite, connected, and undirected graph. A graphoidal decomposition (GD) of is a collection of nontrivial paths and cycles in that are internally disjoint such that every edge of lies in exactly one member of . By restricting the members of a GD to be induced, the concept of induced graphoidal decomposition (IGD) of a graph has been defined. The minimum cardinality of an IGD of a graph is called the induced graphoidal decomposition number and is denoted by (). An IGD of without any cycles is called an induced acyclic graphoidal decomposition (IAGD) of , and the minimum cardinality of an IAGD of is called the induced acyclic graphoidal decomposition number of , denoted by (). In this paper we determine the value of () and () when is a product graph, the factors being paths/cycles.

2010 ◽  
Vol 02 (02) ◽  
pp. 143-150
Author(s):  
CHUNXIANG WANG

The super edge-connectivity λ′ of a connected graph G is the minimum cardinality of an edge-cut F in G such that every component of G–F contains at least two vertices. Let two connected graphs Gm and Gp have m and p vertices, minimum degree δ(Gm) and δ(Gp), edge-connectivity λ(Gm) and λ(Gp), respectively. This paper shows that min {pλ(Gm), λ(Gp) + δ(Gm), δ(Gm)(λ(Gp) + 1), (δ(Gm) + 1)λ(Gp)} ≤ λ(Gm * Gp) ≤ δ(Gm) + δ(Gp), where the product graph Gm * Gp of two given graphs Gm and Gp, defined by J. C. Bermond et al. [J. Combin. Theory B36 (1984) 32–48] in the context of the so-called (△, D)-problem, is one interesting model in the design of large reliable networks. Moreover, this paper determines λ′(Gm * Gp) ≤ min {pδ(Gm), ξ(Gp) + 2δ(Gm)} and λ′(G1 ⊕ G2) ≥ min {n, λ1 + λ2} if δ1 = δ2.


2020 ◽  
Vol 28 (1) ◽  
Author(s):  
Dina Saleh ◽  
Nefertiti Megahed

Abstract Let A be a commutative ring with 1≠0 and R=A×A. The unit dot product graph of R is defined to be the undirected graph UD(R) with the multiplicative group of units in R, denoted by U(R), as its vertex set. Two distinct vertices x and y are adjacent if and only if x·y=0∈A, where x·y denotes the normal dot product of x and y. In 2016, Abdulla studied this graph when $A=\mathbb {Z}_{n}$ A = ℤ n , $n \in \mathbb {N}$ n ∈ ℕ , n≥2. Inspired by this idea, we study this graph when A has a finite multiplicative group of units. We define the congruence unit dot product graph of R to be the undirected graph CUD(R) with the congruent classes of the relation $\thicksim $ ∽ defined on R as its vertices. Also, we study the domination number of the total dot product graph of the ring $R=\mathbb {Z}_{n}\times... \times \mathbb {Z}_{n}$ R = ℤ n × ... × ℤ n , k times and k<∞, where all elements of the ring are vertices and adjacency of two distinct vertices is the same as in UD(R). We find an upper bound of the domination number of this graph improving that found by Abdulla.


2020 ◽  
Vol 12 (02) ◽  
pp. 2050025
Author(s):  
Manal N. Al-Harere ◽  
Mohammed A. Abdlhusein

In this paper, a new model of domination in graphs called the pitchfork domination is introduced. Let [Formula: see text] be a finite, simple and undirected graph without isolated vertices, a subset [Formula: see text] of [Formula: see text] is a pitchfork dominating set if every vertex [Formula: see text] dominates at least [Formula: see text] and at most [Formula: see text] vertices of [Formula: see text], where [Formula: see text] and [Formula: see text] are non-negative integers. The domination number of [Formula: see text], denotes [Formula: see text] is a minimum cardinality over all pitchfork dominating sets in [Formula: see text]. In this work, pitchfork domination when [Formula: see text] and [Formula: see text] is studied. Some bounds on [Formula: see text] related to the order, size, minimum degree, maximum degree of a graph and some properties are given. Pitchfork domination is determined for some known and new modified graphs. Finally, a question has been answered and discussed that; does every finite, simple and undirected graph [Formula: see text] without isolated vertices have a pitchfork domination or not?


2019 ◽  
Vol 53 (1) ◽  
pp. 261-268
Author(s):  
D. Doğan Durgun ◽  
Ali Bagatarhan

The interconnection networks are modeled by means of graphs to determine the reliability and vulnerability. There are lots of parameters that are used to determine vulnerability. The average covering number is one of them which is denoted by $ \overline{\beta }(G)$, where G is simple, connected and undirected graph of order n ≥ 2. In a graph G = (V(G), E(G)) a subset $ {S}_v\subseteq V(G)$ of vertices is called a cover set of G with respect to v or a local covering set of vertex v, if each edge of the graph is incident to at least one vertex of Sv. The local covering number with respect to v is the minimum cardinality of among the Sv sets and denoted by βv. The average covering number of a graph G is defined as β̅(G) = 1/|v(G)| ∑ν∈v(G)βν In this paper, the average covering numbers of kth power of a cycle $ {C}_n^k$ and Pn □ Pm, Pn □ Cm, cartesian product of Pn and Pm, cartesian product of Pn and Cm are given, respectively.


Author(s):  
P. Nataraj ◽  
R. Sundareswaran ◽  
V. Swaminathan

In a simple, finite and undirected graph [Formula: see text] with vertex set [Formula: see text] and edge set [Formula: see text], a subset [Formula: see text] of [Formula: see text] is said to be a degree equitable dominating set if for every [Formula: see text] there exists a vertex [Formula: see text] such that [Formula: see text] and [Formula: see text], where [Formula: see text] denotes the degree of [Formula: see text] in [Formula: see text]. The minimum cardinality of such a dominating set is denoted by [Formula: see text] and is called the equitable domination number of [Formula: see text]. In this paper, we introduce Complementary Equitably Totally Disconnected Equitable domination in graphs and obtain some interesting results. Also, we discuss some bounds of this new domination parameter.


2014 ◽  
Vol 27 ◽  
Author(s):  
Benham Hashemi ◽  
Mahtab Mirzaei Khalilabadi ◽  
Hanieh Tavakolipour

This paper extends the concept of tropical tensor product defined by Butkovic and Fiedler to general idempotent dioids. Then, it proposes an algorithm in order to solve the fixed-point type Sylvester matrix equations of the form X = A ⊗ X ⊕ X ⊗ B ⊕ C. An application is discussed in efficiently solving the minimum cardinality path problem in Cartesian product graphs.


2011 ◽  
Vol 480-481 ◽  
pp. 922-927 ◽  
Author(s):  
Yan Zhong Hu ◽  
Hua Dong Wang

Hypercube is one of the basic types of interconnection networks. In this paper, we use the concept of the Cartesian product graph to define the hypercube Qn, we study the relationship between the isomorphic graphs and the Cartesian product graphs, and we get the result that there exists a Hamilton cycle in the hypercube Qn. Meanwhile, the other properties of the hypercube Qn, such as Euler characteristic and bipartite characteristic are also introduced.


1998 ◽  
Vol 7 (4) ◽  
pp. 397-401 ◽  
Author(s):  
OLLE HÄGGSTRÖM

We consider continuous time random walks on a product graph G×H, where G is arbitrary and H consists of two vertices x and y linked by an edge. For any t>0 and any a, b∈V(G), we show that the random walk starting at (a, x) is more likely to have hit (b, x) than (b, y) by time t. This contrasts with the discrete time case and proves a conjecture of Bollobás and Brightwell. We also generalize the result to cases where H is either a complete graph on n vertices or a cycle on n vertices.


Filomat ◽  
2015 ◽  
Vol 29 (8) ◽  
pp. 1781-1788 ◽  
Author(s):  
Ismael Yero ◽  
Juan Rodríguez-Velázquez

A set of vertices S of a graph G is a geodetic set of G if every vertex v ? S lies on a shortest path between two vertices of S. The minimum cardinality of a geodetic set of G is the geodetic number of G and it is denoted by 1(G). A Steiner set of G is a set of vertices W of G such that every vertex of G belongs to the set of vertices of a connected subgraph of minimum size containing the vertices of W. The minimum cardinality of a Steiner set of G is the Steiner number of G and it is denoted by s(G). Let G and H be two graphs and let n be the order of G. The corona product G ? H is defined as the graph obtained from G and H by taking one copy of G and n copies of H and joining by an edge each vertex from the ith-copy of H to the ith-vertex of G. We study the geodetic number and the Steiner number of corona product graphs. We show that if G is a connected graph of order n ? 2 and H is a non complete graph, then g(G ? H) ? s(G ? H), which partially solve the open problem presented in [Discrete Mathematics 280 (2004) 259-263] related to characterize families of graphs G satisfying that g(G) ? s(G).


Author(s):  
Anisha Jean Mathias ◽  
V. Sangeetha ◽  
Mukti Acharya

A signed graph [Formula: see text] is a simple undirected graph in which each edge is either positive or negative. Restrained dominating set [Formula: see text] in [Formula: see text] is a restrained dominating set of the underlying graph [Formula: see text] where the subgraph induced by the edges across [Formula: see text] and within [Formula: see text] is balanced. The minimum cardinality of a restrained dominating set of [Formula: see text] is called the restrained domination number, denoted by [Formula: see text]. In this paper, we initiate the study on various critical concepts to investigate the effect of edge removal or edge addition on restrained domination number in signed graphs.


Sign in / Sign up

Export Citation Format

Share Document