scholarly journals Fractal Spherical Harmonics

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
M. A. Navascués

This paper tackles the construction of fractal maps on the unit sphere. The functions defined are a generalization of the classical spherical harmonics. The methodology used involves an iterated function system and a linear and bounded operator of functions on the sphere. For a suitable choice of the coefficients of the system, one obtains classical maps on the sphere. The different values of the system parameters provide Bessel sequences, frames, and Riesz fractal bases for the Lebesgue space of the square integrable functions on the sphere. The Laplace series expansion is generalized to a sum in terms of the new fractal mappings.


Author(s):  
Nicolas Nagel ◽  
Martin Schäfer ◽  
Tino Ullrich

AbstractWe provide a new upper bound for sampling numbers $$(g_n)_{n\in \mathbb {N}}$$ ( g n ) n ∈ N associated with the compact embedding of a separable reproducing kernel Hilbert space into the space of square integrable functions. There are universal constants $$C,c>0$$ C , c > 0 (which are specified in the paper) such that $$\begin{aligned} g^2_n \le \frac{C\log (n)}{n}\sum \limits _{k\ge \lfloor cn \rfloor } \sigma _k^2,\quad n\ge 2, \end{aligned}$$ g n 2 ≤ C log ( n ) n ∑ k ≥ ⌊ c n ⌋ σ k 2 , n ≥ 2 , where $$(\sigma _k)_{k\in \mathbb {N}}$$ ( σ k ) k ∈ N is the sequence of singular numbers (approximation numbers) of the Hilbert–Schmidt embedding $$\mathrm {Id}:H(K) \rightarrow L_2(D,\varrho _D)$$ Id : H ( K ) → L 2 ( D , ϱ D ) . The algorithm which realizes the bound is a least squares algorithm based on a specific set of sampling nodes. These are constructed out of a random draw in combination with a down-sampling procedure coming from the celebrated proof of Weaver’s conjecture, which was shown to be equivalent to the Kadison–Singer problem. Our result is non-constructive since we only show the existence of a linear sampling operator realizing the above bound. The general result can for instance be applied to the well-known situation of $$H^s_{\text {mix}}(\mathbb {T}^d)$$ H mix s ( T d ) in $$L_2(\mathbb {T}^d)$$ L 2 ( T d ) with $$s>1/2$$ s > 1 / 2 . We obtain the asymptotic bound $$\begin{aligned} g_n \le C_{s,d}n^{-s}\log (n)^{(d-1)s+1/2}, \end{aligned}$$ g n ≤ C s , d n - s log ( n ) ( d - 1 ) s + 1 / 2 , which improves on very recent results by shortening the gap between upper and lower bound to $$\sqrt{\log (n)}$$ log ( n ) . The result implies that for dimensions $$d>2$$ d > 2 any sparse grid sampling recovery method does not perform asymptotically optimal.



2009 ◽  
Vol 147 (2) ◽  
pp. 455-488 ◽  
Author(s):  
R. D. MAULDIN ◽  
T. SZAREK ◽  
M. URBAŃSKI

AbstractWe deal with contracting finite and countably infinite iterated function systems acting on Polish spaces, and we introduce conformal Graph Directed Markov Systems on Polish spaces. Sufficient conditions are provided for the closure of limit sets to be compact, connected, or locally connected. Conformal measures, topological pressure, and Bowen's formula (determining the Hausdorff dimension of limit sets in dynamical terms) are introduced and established. We show that, unlike the Euclidean case, the Hausdorff measure of the limit set of a finite iterated function system may vanish. Investigating this issue in greater detail, we introduce the concept of geometrically perfect measures and provide sufficient conditions for geometric perfectness. Geometrical perfectness guarantees the Hausdorff measure of the limit set to be positive. As a by–product of the mainstream of our investigations we prove a 4r–covering theorem for all metric spaces. It enables us to establish appropriate co–Frostman type theorems.



2002 ◽  
Vol 31 (8) ◽  
pp. 477-496
Author(s):  
Said Ngobi

The classical Itô formula is generalized to some anticipating processes. The processes we consider are in a Sobolev space which is a subset of the space of square integrable functions over a white noise space. The proof of the result uses white noise techniques.



Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 853
Author(s):  
Enrico Celeghini ◽  
Manuel Gadella ◽  
Mariano del Olmo

Using normalized Hermite functions, we construct bases in the space of square integrable functions on the unit circle (L2(C)) and in l2(Z), which are related to each other by means of the Fourier transform and the discrete Fourier transform. These relations are unitary. The construction of orthonormal bases requires the use of the Gramm–Schmidt method. On both spaces, we have provided ladder operators with the same properties as the ladder operators for the one-dimensional quantum oscillator. These operators are linear combinations of some multiplication- and differentiation-like operators that, when applied to periodic functions, preserve periodicity. Finally, we have constructed riggings for both L2(C) and l2(Z), so that all the mentioned operators are continuous.



Fractals ◽  
2015 ◽  
Vol 23 (04) ◽  
pp. 1550046
Author(s):  
D. LA TORRE ◽  
F. MENDIVIL

Given a continuous rectifiable function [Formula: see text], we present a simple Iterated Function System (IFS) with probabilities whose invariant measure is the normalized arclength measure on the graph of [Formula: see text].



2008 ◽  
Vol 392-394 ◽  
pp. 575-579
Author(s):  
Yu Hao Li ◽  
Jing Chun Feng ◽  
Y. Li ◽  
Yu Han Wang

Self-affine and stochastic affine transforms of R2 Iterated Function System (IFS) are investigated in this paper for manufacturing non-continuous objects in nature that exhibit fractal nature. A method for modeling and fabricating fractal bio-shapes using machining is presented. Tool path planning algorithm for numerical control machining is presented for the geometries generated by our fractal generation function. The tool path planning algorithm is implemented on a CNC machine, through executing limited number of iteration. This paper describes part of our ongoing research that attempts to break through the limitation of current CAD/CAM and CNC systems that are oriented to Euclidean geometry objects.



Author(s):  
Amine Rahmani

Chaotic cryptography has been a well-studied domain over the last few years. Many works have been done, and the researchers are still getting benefit from this incredible mathematical concept. This paper proposes a new model for coloured image encryption using simple but efficient chaotic equations. The proposed model consists of a symmetric encryption scheme in which it uses the logistic equation to generate secrete keys then an affine recursive transformation to encrypt pixels' values. The experimentations show good results, and theoretic discussion proves the efficiency of the proposed model.



Sign in / Sign up

Export Citation Format

Share Document