scholarly journals Modeling the Electrostatic Deflection of a MEMS Multilayers Based Actuator

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hassen M. Ouakad ◽  
Muhammad A. Hawwa ◽  
Hussain M. Al-Qahtani

An actuator comprised of a rigid substrate and two parallel clamped-clamped microbeams is modeled under the influence of electrostatic loading. The problem is considered under the context of nonlinear Euler's mechanics, where the actuating system is described by coupled integrodifferential equations with relevant boundary conditions. Galerkin-based discretization is utilized to obtain a reduced-order model, which is solved numerically. Actuators with different gap sizes between electrode and beams are investigated. The obtained results are compared to simulations gotten by the finite-element commercial software ANSYS.

Author(s):  
Carlos Martel ◽  
José J. Sánchez

Intentional mistuning is a well known procedure to decrease the uncontrolled vibration amplification effects of the inherent random mistuning and to reduce the sensitivity to it. The idea is to introduce an intentional mistuning pattern that is small but much larger that the existing random mistuning. The frequency of adjacent blades is moved apart by the intentional mistuning, reducing the effect of the blade-to-blade coupling and thus the effect of the random mistuning. The situation considered in this work is more complicated because the main source for the blade damping is the effect of the aerodynamic forces (as it happens in a blisk for a family of blade dominated modes with very similar frequencies). In this case the damping is clearly defined for the tuned traveling waves but not for each blade. The problem is analyzed using the Asymptotic Mistuning Model methodology. A reduced order model is derived that allows us to understand the action mechanism of the intentional mistuning, and gives a simple expression for the estimation of its beneficial effect. The results from the reduced model are compared with those from a finite element model of a more realistic rotor under different forcing conditions.


2003 ◽  
Vol 125 (3) ◽  
pp. 772-776 ◽  
Author(s):  
P. Marugabandhu ◽  
J. H. Griffin

A reduced-order model has been developed that can be used to accurately and quickly calculate the changes in the natural frequencies and mode shapes of a blade that are caused by centrifugal stiffening. It has been corroborated by comparisons with finite element analyses of a cantilevered tapered plate and with frequencies from a low aspect ratio fan blade.


Author(s):  
Thomas Maywald ◽  
Christoph R. Heinrich ◽  
Arnold Kühhorn ◽  
Sven Schrape ◽  
Thomas Backhaus

Abstract It is widely known that the vibration characteristics of blade integrated discs can dramatically change in the presence of manufacturing tolerances and wear. In this context, an increasing number of publications discuss the influence of the geometrical variability of blades on phenomena like frequency splitting and mode localization. This contribution is investigating the validity of a stiffness modified reduced order model for predicting the modal parameters of a geometrically mistuned compressor stage. In detail, the natural frequencies and mode shapes, as well as the corresponding mistuning patterns, are experimentally determined for an exemplary rotor. Furthermore, a blue light fringe projector is used to identify the geometrical differences between the actual rotor and the nominal blisk design. With the help of these digitization results, a realistic finite element model of the whole compressor stage is generated. Beyond that, a reduced order model is implemented based on the nominal design intention. Finally, the numerical predictions of the geometrically updated finite element model and the stiffness modified reduced order model are compared to the vibration measurement results. The investigation is completed by pointing out the benefits and limitations of the SNM-approach in the context of geometrically induced mistuning effects.


Author(s):  
Ronan Scanff ◽  
David Néron ◽  
Pierre Ladevèze ◽  
Philippe Barabinot ◽  
Frédéric Cugnon ◽  
...  

Author(s):  
Allan X. Zhong ◽  
Haoyue Zhang

Abstract Engineering analysis of complex structures or mechanical systems typically involves contact with multiple components, large deformation, and material nonlinearity, which requires the application of nonlinear finite element methods. Despite the advancement of commercial software for finite element analysis (FEA), nonlinear FEA of a multi-component mechanical assembly will take hours to days, and even weeks to complete. It is highly desired to develop a reduced-order model for a family of complex structures that can reduce an original problems’ complexity and degree of freedom but has a reasonably small discrepancy with the full model and significantly reduces the computation time. The typical approach to construct a reduced model includes 1) the response surface method via numerical design of experiments and, 2) the simplified physics approach. In this paper, it is proposed to develop a reduced model through the combination of simplified physics, dimensional analysis [1], and numerical design of experiments. The approach is applied to the construction of a reduced model for the analysis of a downhole plug [2]. The developed reduced model is verified by full-scale FEA models and validated through physical tests. The reduced model is implemented in a spreadsheet and takes only seconds to complete a calculation in contrast to hours using a full FEA model, enabling engineers’ quick evaluation of the corresponding designs.


2021 ◽  
Author(s):  
Aditya Dubey ◽  
Rishi Relan ◽  
Uwe Lohse ◽  
Jaroslaw Szwedowicz

Abstract The secondary stresses that result from nonlinear and transient thermal gradients during the start-up and shut down of the large gas turbine engines drive low-cycle fatigue at specific locations of the outer casing. Typical service inspection of the outer casing is primarily based on finite element analysis estimates, considering various safety factors. However, as finite element analysis includes the worst possible combination of loading scenarios and operating conditions any engine may encounter in actual operation, this results in a conservative estimation of the service interval. Therefore, a generic preventive maintenance plan for the whole fleet often underutilises the casing capability and added cost. Hence, this paper proposes a data-driven nonlinear dynamic reduced-order model developed using the temperature data from low-cycle fatigue critical casing locations, ramp rates, and the percentage load of operation to predict the stresses. As a result, a reduced-order model can assess the damage for low-cycle fatigue critical locations in real-time using the operational data and propose an appropriate service intervention plan for each casing in a fleet.


Sign in / Sign up

Export Citation Format

Share Document