Volume 12: Mechanics of Solids, Structures, and Fluids
Latest Publications


TOTAL DOCUMENTS

71
(FIVE YEARS 71)

H-INDEX

1
(FIVE YEARS 1)

Published By American Society Of Mechanical Engineers

9780791884607

Author(s):  
Cihan Talebi ◽  
Bülent Acar ◽  
Gökhan O. Özgen

Abstract Due to their superior weight to strength ratio of composites to common metallic structures, composite technology is widely used in aerospace industry. Assessment of damage in composites has gained interest after a large number of accidents caused by unanticipated damages in the composite structures. Many different structural health monitoring applications were developed over the years due to the fact that composite materials may inherit damage from within, not always visible from surface. The most common types of errors encountered in the industry are due to misaligned fibers, a mix-up in ply order, and delaminations: all presenting changes in the vibro-acoustical performance of the composite structure. This paper discusses the change in the dynamic properties of a composite structure contains a manufacturing error such as a ply lay-up error, and a ply angle error. Both plate and cylindrical structure types were considered for the stated error types. Effect of symmetric errors, unsymmetrical and unbalanced errors, and mid-plane errors were considered in the case of ply orientations, and dynamic stiffness matrix was used to identify the error. Identification of the structure’s layup properties and manufacturing error identification is employed. From the measured modal properties of the structure, a back-tracking strategy was used to generate the ply lay-up of the composite structure. Prepreg plates of a single carbon fiber system and filament wound hybrid cylinders consisting of glass and carbon fibers were manufactured for testing. Modal tests on plates and cylindrical composite structures were performed and compared with the analysis. A good match between the finite element model and experiment was shown in natural frequencies and mode shapes.


Author(s):  
Sean Jenson ◽  
Muhammad Ali ◽  
Khairul Alam

Abstract Thin walled axial members are typically used in automobiles’ side and front chassis to improve crashworthiness of vehicles. Extensive work has been done in exploring energy absorbing characteristics of thin walled structural members under axial compressive loading. The present study is a continuation of the work presented earlier on evaluating the effects of inclusion of functionally graded cellular structures in thin walled members under axial compressive loading. A compact functionally graded composite cellular core was introduced inside a cross tube with side length and wall thickness of 25.4 mm and 3.048 mm, respectively. The parameters governing the energy absorbing characteristics such as deformation or collapsing modes, crushing/ reactive force, plateau stress level, and energy curves, were evaluated. The results showed that the inclusion of composite graded cellular structure increased the energy absorption capacity of the cross tube significantly. The composite graded structure underwent progressive stepwise, layer by layer, crushing mode and provided lateral stability to the cross tube thus delaying local tube wall collapse and promoting large localized folds on the tube’s periphery as compared to highly localized and compact deformation modes that were observed in the empty cross tube under axial compressive loading. The variation in deformation mode resulted in enhanced stiffness of the composite structure, and therefore, high energy absorption by the structure. This aspect has a potential to be exploited to improve the crashworthiness of automobile structures.


Author(s):  
Sree Kalyan Patiballa ◽  
Girish Krishnan

Abstract Deformable metamaterials are materials that are made up of several repeating elastic building blocks whose geometries can be tailored to obtain a specified global shape change or stiffness behavior. They are deemed useful in soft robotics, shape morphing mechanisms, stretchable electronics, wearable devices, and devices that adapt according to their environment. This paper presents a two-step sequential design framework for the synthesis of deformable mechanical metamaterials where (a) topology optimization is used to map global deformation requirement to local elasticity matrix, followed by (b) a selection of building block microstructure geometry from a database and refining it to match the elasticity requirement. The first step is accomplished through a unique parameterization scheme that enables the classification of the planar orthotropic elasticity matrix into four distinct classes. The second step uses a kinetostatic framework known as load flow visualization to populate candidate microstructure geometries within these four classes. Finally, the framework is validated for the design of a cantilever beam with a specified lateral stiffness requirement and the design of planar sheets that exhibit sinusoidal deformation patterns.


Author(s):  
Ruby Romsland ◽  
Kenneth J. McDonald

Abstract The presence of corrosion on or within structures is of major concern as corrosion reduces the integrity of the materials which could potentially result in large-scale failures of structures and equipment.1 The United States Navy is an organization that actively works to prevent large equipment failure due to corrosion. One such problem is the corrosion of the friction brake assembly on the MK50 Weapon Station, which has recently been experiencing corrosion between the friction brake and its set screw preventing it from operating correctly. The friction brake was known to be stainless steel; however, the set screw was of unknown composition. Through elemental analysis it was determined that the MK50 Weapons Station friction brake set screw was similar in composition to commonly available black oxide coated steel screws. Electrochemical polarization measurements of the friction brake assembly components revealed that the set screw and the friction brake were electrochemically dissimilar metals which resulted in the galvanic corrosion of the assembly when out at sea. The electrochemical polarization measurements of a stainless steel screw showed a corrosion potential similar to that of the friction brake; therefore, replacing the current set screw with a stainless steel screw would decrease the galvanic potential difference between the set screw and the friction brake. This proposed solution is expected to slow or prevent further corrosion of the MK50 Weapon Station ensuring the combat readiness of the equipment.


Author(s):  
Seyed M. Allameh ◽  
Avery Lenihan ◽  
Roger Miller ◽  
Hadi Allameh

Abstract Additive manufacturing technology has matured enough to produce real industrial components. A newer method of 3D printing is the deposition of molten metal beads using a MIG weld torch. This involves a 3D printer equipped with a MIG torch layering the metals in desired shapes. It allows the fabrication of components made of MIG weld wires, currently available from various elements including Cu, Al, steel and alloys. Some of these structures made by 3D welding will have applications in critical load bearing conditions. The reliability of such components will be vital in applications where human lives are at stake. Tensile tests are conducted to verify the required strength of the fabricated parts which will undergo monotonic loading; however, fatigue tests are required for cases where cyclic loading will take place. Conventional tensile and fatigue testing requires macro-scale samples. With MIG welding, it is possible to make thin-walled structures. Fatigue testing on samples extracted from thin walls is made possible by microtesting. This study is focused on the mechanical properties of 3D welded structures made from MIG welding wires. Our earlier results showed orientation dependence of mechanical properties in 3D welded structures. They also showed the effect of substrates in expression of the orientation dependence. Welding on metal substrate produces weld beads that are harder at the substrate interfacial area. However, for structures welded on ceramics, the opposite is true. They exhibit a softer substrate interfacial area and a relatively harder top. Our newer results show fatigue properties of structures made by 3D welding. Microsamples measuring 0.2 mm × 0.2 mm × 1.0 mm were extracted from metal beads using a CNC mill along with an EDM. The contours of the samples were machined by milling and the back side was cut by electro discharge machining. Specimens were then polished to the desired size and mounted in the grippers of an E1000 Instron load frame. WaveMatrix® application software from Instron was used to control the machine and to obtain testing data. Fatigue tests were performed, and life cycles were determined for various stress levels up to over 5 million cycles. The preliminary results of tensile tests of these samples show strength levels that are comparable to those of parent metal, in the range of 600–950MPa. Results of fatigue tests show high fatigue lives associated with relatively high stresses. The preliminary results will be presented and the implications of the use of 3D welded rebar in 3D printing of reinforced concrete structures will be discussed.


Author(s):  
MD Imrul Reza Shishir ◽  
Alireza Tabarraei

Abstract The fracture properties of various grain boundaries in graphene are investigated using the cohesive zone method (CZM). Molecular dynamics simulations are conducted using REBO2+S potential in order to develop a cohesive zone model for graphene grain boundaries using a double cantilever bicrystalline graphene sheet. The cohesive zone model is used to investigate the traction–separation law to understand the separation-work and strength of grain boundaries.


Author(s):  
Ryo Kikuchi ◽  
Shujiro Suzuki ◽  
Ken Suzuki

Abstract Ni-based superalloys with excellent high temperature strength have been used in advanced thermal power plants. It was found that grain boundary cracking is caused in the alloy under creep-fatigue loading due to the degradation of the crystallinity of grain boundaries and the grain boundary cracking degrades the lifetime of the alloy drastically. In order to clarify the mechanism of intergranular cracking, in this research, static and dynamic strains were applied to a bicrystal structure of the alloy perpendicularly to the grain boundary using molecular dynamics analysis. In addition, the effect of the accumulation of vacancies in the area with high-density of dislocations on the strength of the bicrystal structure was analysed. It was found that the fracture mode of the bicrystal structure changed from ductile transgranular fracture to brittle intergranular one as strong functions of the combination of Schmid factor of the two grains and the density of defects around the grain boundary. The local heavy plastic deformation occurred around the grain boundary with large difference in Schmid factor between nearby grains and the diffusion of the newly grown dislocations and vacancies was suppressed by the large strain field due to the large mismatch of the crystallographic orientation between the grains. The accumulation of vacancies accelerated the local plastic deformation around the grain boundary. Therefore, the mechanism of the acceleration of intergranular cracking under creep-fatigue loading was successfully clarified by MD analysis.


Author(s):  
Robert L. Lowe ◽  
Christopher G. Cooley

Abstract This paper investigates the nonlinear dynamics of square dielectric elastomer membranes under time-dependent, through-thickness compressive loading. The dielectric elastomer is modeled as an isotropic ideal dielectric, with mechanical stiffening at large strains captured using the Gent hyperelastic constitutive model. The equation of motion for the in-plane membrane stretch is derived using Hamilton’s principle. The static response of the membrane is first investigated, with equilibrium stretches calculated numerically for a wide range of compressive pre-loads and applied voltages. Snap-through instabilities are observed, with the critical snap-through voltage decreasing with increasing compressive pre-load. The dynamic response of the membrane is then investigated under forced harmonic excitation. Frequency response plots characterizing the steady-state vibration reveal primary, subharmonic, and superharmonic resonances. Near these resonances, two stable vibration states are possible, corresponding to upper and lower branches in the frequency response. Significant and practically meaningful differences in the dynamic response are observed when the system vibrates at a fixed frequency about the upper and lower branches, a feature not discussed in previous research.


Author(s):  
Aref Ghaderi ◽  
Vahid Morovati ◽  
Pouyan Nasiri ◽  
Roozbeh Dargazany

Abstract Material parameters related to deterministic models can have different values due to variation of experiments outcome. From a mathematical point of view, probabilistic modeling can improve this problem. It means that material parameters of constitutive models can be characterized as random variables with a probability distribution. To this end, we propose a constitutive models of rubber-like materials based on uncertainty quantification (UQ) approach. UQ reduces uncertainties in both computational and real-world applications. Constitutive models in elastomers play a crucial role in both science and industry due to their unique hyper-elastic behavior under different loading conditions (uni-axial extension, biaxial, or pure shear). Here our goal is to model the uncertainty in constitutive models of elastomers, and accordingly, identify sensitive parameters that we highly contribute to model uncertainty and error. Modern UQ models can be implemented to use the physics of the problem compared to black-box machine learning approaches that uses data only. In this research, we propagate uncertainty through the model, characterize sensitivity of material behavior to show the importance of each parameter for uncertainty reduction. To this end, we utilized Bayesian rules to develop a model considering uncertainty in the mechanical response of elastomers. As an important assumption, we believe that our measurements are around the model prediction, but it is contaminated by Gaussian noise. We can make the noise by maximizing the posterior. The uni-axial extension experimental data set is used to calibrate the model and propagate uncertainty in this research.


Author(s):  
Shah Alam ◽  
Damodar Khanal

Abstract The goal of this paper is to analyze the impact behavior among geometrically different sandwich panels shown upon impact velocities. Initially, composite model with aluminum honeycomb core and Kevlar (K29) face sheets is developed in ABAQUS/Explicit and different impact velocities are applied. Keeping other parameters constant, model is simulated with T800S/epoxy face sheets. Residual velocities, energy absorption (%), and maximum deformation depth is calculated for sandwich panel for both models at five different velocities by executing finite element analysis. Once the better material is found for face sheets, process is extended by varying the ratio of front face sheet thickness to back face sheet thickness keeping other geometrical parameters constant to find the better geometry. Also, comparison of impact responses of sandwich composite panel on different ratio of front face sheet thickness to back face sheet thickness is done and validated with other results available in literature.


Sign in / Sign up

Export Citation Format

Share Document