scholarly journals Oscillatory Behavior of Second-Order Nonlinear Neutral Differential Equations

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Tongxing Li ◽  
Yuriy V. Rogovchenko

We study oscillatory behavior of solutions to a class of second-order nonlinear neutral differential equations under the assumptions that allow applications to differential equations with delayed and advanced arguments. New theorems do not need several restrictive assumptions required in related results reported in the literature. Several examples are provided to show that the results obtained are sharp even for second-order ordinary differential equations and improve related contributions to the subject.

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 318
Author(s):  
Osama Moaaz ◽  
Amany Nabih ◽  
Hammad Alotaibi ◽  
Y. S. Hamed

In this paper, we establish new sufficient conditions for the oscillation of solutions of a class of second-order delay differential equations with a mixed neutral term, which are under the non-canonical condition. The results obtained complement and simplify some known results in the relevant literature. Example illustrating the results is included.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 285
Author(s):  
Saad Althobati ◽  
Jehad Alzabut ◽  
Omar Bazighifan

The oscillation of non-linear neutral equations contributes to many applications, such as torsional oscillations, which have been observed during earthquakes. These oscillations are generally caused by the asymmetry of the structures. The objective of this work is to establish new oscillation criteria for a class of nonlinear even-order differential equations with damping. We employ different approach based on using Riccati technique to reduce the main equation into a second order equation and then comparing with a second order equation whose oscillatory behavior is known. The new conditions complement several results in the literature. Furthermore, examining the validity of the proposed criteria has been demonstrated via particular examples.


1993 ◽  
Vol 36 (4) ◽  
pp. 485-496 ◽  
Author(s):  
Shigui Ruan

AbstractIn this paper, we consider the oscillatory behavior of the second order neutral delay differential equationwhere t ≥ t0,T and σ are positive constants, a,p, q € C(t0, ∞), R),f ∊ C[R, R]. Some sufficient conditions are established such that the above equation is oscillatory. The obtained oscillation criteria generalize and improve a number of known results about both neutral and delay differential equations.


Author(s):  
Marianna Ruggieri ◽  
Shyam Sundar Santra ◽  
Andrea Scapellato

AbstractIn this paper, we study oscillatory properties of neutral differential equations. Moreover, we discuss some examples that show the effectiveness and the feasibility of the main results.


2020 ◽  
Vol 70 (2) ◽  
pp. 389-400
Author(s):  
Simona Fišnarová ◽  
Robert Mařík

Abstract Neutral differential equations are one of the most important extensions of classical ordinary differential equations and aim to give a better explanation for modeling phenomena where ordinary differential equations are insufficient. Naturally, all the questions studied in the scope of ordinary differential equations attracted the attention also for neutral differential equations. In this paper we study the oscillatory properties of second order half-linear neutral differential equations. We present oscillation criteria derived using a new approach. This approach allows us to reduce common restrictions on the deviations in arguments which are present in the currently known results of this type.


Sign in / Sign up

Export Citation Format

Share Document