scholarly journals Improving Inverse Dynamics Accuracy in a Planar Walking Model Based on Stable Reference Point

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Alaa Abdulrahman ◽  
Kamran Iqbal ◽  
Gannon White

Physiologically and biomechanically, the human body represents a complicated system with an abundance of degrees of freedom (DOF). When developing mathematical representations of the body, a researcher has to decide on how many of those DOF to include in the model. Though accuracy can be enhanced at the cost of complexity by including more DOF, their necessity must be rigorously examined. In this study a planar seven-segment human body walking model with single DOF joints was developed. A reference point was added to the model to track the body’s global position while moving. Due to the kinematic instability of the pelvis, the top of the head was selected as the reference point, which also assimilates the vestibular sensor position. Inverse dynamics methods were used to formulate and solve the equations of motion based on Newton-Euler formulae. The torques and ground reaction forces generated by the planar model during a regular gait cycle were compared with similar results from a more complex three-dimensional OpenSim model with muscles, which resulted in correlation errors in the range of 0.9–0.98. The close comparison between the two torque outputs supports the use of planar models in gait studies.

Author(s):  
Stefan Reichl ◽  
Wolfgang Steiner

This work presents three different approaches in inverse dynamics for the solution of trajectory tracking problems in underactuated multibody systems. Such systems are characterized by less control inputs than degrees of freedom. The first approach uses an extension of the equations of motion by geometric and control constraints. This results in index-five differential-algebraic equations. A projection method is used to reduce the systems index and the resulting equations are solved numerically. The second method is a flatness-based feedforward control design. Input and state variables can be parameterized by the flat outputs and their time derivatives up to a certain order. The third approach uses an optimal control algorithm which is based on the minimization of a cost functional including system outputs and desired trajectory. It has to be distinguished between direct and indirect methods. These specific methods are applied to an underactuated planar crane and a three-dimensional rotary crane.


Author(s):  
Jingzhou James Yang ◽  
Qiuling Zou

Pregnant women’s size, shape, and weight changes have significant effects on their walking stability. Traditionally, experiments are used to study the effects of subjects, but it is time consuming and expensive. This paper presents an optimization-based pregnant women walking simulation with one-stride formulation. The pregnant woman’s model with 55 degrees of freedom (DOFs) is used, including 6 global DOF’s and 49 human body DOF’s. The dynamic equations of motion are based on the recursive dynamics. Without the constraint of symmetry of the human body between two steps within one walking cycle, the study is based on bio-mechanical, human kinematic, and dynamic properties to perform the one-stride simulation, which represent the holonomic and non-holonomic constraints in walking simulation. This forms a nonlinear optimization problem. The summation of all joint actuator torques squared within one stride is the cost function. Nine determinant DOF’s are used to analyze the kinematics and three for dynamics. Three cases (non-pregnancy, 6 month, and 9 month pregnancy) are adopted for the test and investigation. The simulation results show that during the course of pregnancy, pregnant women’s bodies dynamic and kinematic properties change and thus affect their walking and stability.


Author(s):  
Rahid Zaman ◽  
Yujiang Xiang ◽  
Jazmin Cruz ◽  
James Yang

Abstract Lifting heavy weight is one of the main reasons for manual material handling related injuries which can be mitigated by determining the limiting lifting weight of a person. In this study, a 40 degrees of freedom (DOFs) spatial skeletal model was employed to predict the symmetric maximum weight lifting motion. The lifting problem was formulated as a multi-objective optimization (MOO) problem to minimize the dynamic effort and maximize the box weight. An inverse-dynamics-based optimization approach was used to determine the optimal lifting motion and the maximum lifting weight considering dynamic joint strength. The predicted lifting motion, ground reaction forces (GRFs), and maximum box weight were shown to match well with the experimental results. It was found that for the three-dimensional (3D) symmetric lifting the left and right GRFs were not same.


Author(s):  
David G. Alciatore ◽  
Lawrence D. Abraham ◽  
Ronald E. Barr

Abstract The dynamics of planar human body motion, solved with a non-iterative matrix formulation, is presented. The approach is based on applying Newton-Euler equations of motion to an assumed 15 body segment model resulting in a system of 48 equations. The system of equations was carefully ordered to result in a banded system (bandwidth = 10) which is solved efficiently. The method is more favorable than a traditional iterative solution because it is more easily coded, reaction forces are more easily dealt with, and multiple solutions for a given body position can be readily obtained. The results described are limited to planar body motion but the method is easily extendible to general three-dimensional motion. A computer program was developed to process digitized body point coordinate data and calculate resultant joint forces and moments for each frame of data. This method of human body dynamics analysis was developed to support laboratory instruction for an Engineering Biomechanics course. Athletic activities are captured with a three-dimensional video digitizing system and the data is processed resulting in time histories of force and moment distributions throughout the body during the captured event. Computer software performs the analyses and provides real-time graphical illustrations of the kinematics and dynamics results. The dynamics results for the leg of a runner are presented here as an example of the application of the method.


Author(s):  
Rahid Zaman ◽  
Yujiang Xiang ◽  
Jazmin Cruz ◽  
James Yang

In this study, the three-dimensional (3D) asymmetric maximum weight lifting is predicted using an inverse-dynamics-based optimization method considering dynamic joint torque limits. The dynamic joint torque limits are functions of joint angles and angular velocities, and imposed on the hip, knee, ankle, wrist, elbow, shoulder, and lumbar spine joints. The 3D model has 40 degrees of freedom (DOFs) including 34 physical revolute joints and 6 global joints. A multi-objective optimization (MOO) problem is solved by simultaneously maximizing box weight and minimizing the sum of joint torque squares. A total of 12 male subjects were recruited to conduct maximum weight box lifting using squat-lifting strategy. Finally, the predicted lifting motion, ground reaction forces, and maximum lifting weight are validated with the experimental data. The prediction results agree well with the experimental data and the model’s predictive capability is demonstrated. This is the first study that uses MOO to predict maximum lifting weight and 3D asymmetric lifting motion while considering dynamic joint torque limits. The proposed method has the potential to prevent individuals’ risk of injury for lifting.


Joint Rail ◽  
2004 ◽  
Author(s):  
Mohammad Durali ◽  
Mohammad Mehdi Jalili Bahabadi

In this article a train model is developed for studying train derailment in passing through bends. The model is three dimensional, nonlinear, and considers 43 degrees of freedom for each wagon. All nonlinear characteristics of suspension elements as well as flexibilities of wagon body and bogie frame, and the effect of coupler forces are included in the model. The equations of motion for the train are solved numerically for different train conditions. A neural network was constructed as an element in solution loop for determination of wheel-rail contact geometry. Derailment factor was calculated for each case. The results are presented and show the major role of coupler forces on possible train derailment.


2021 ◽  
Vol 25 (1) ◽  
pp. 30-37
Author(s):  
Sarah Klopp Christensen ◽  
Aaron Wayne Johnson ◽  
Natalie Van Wagoner ◽  
Taryn E. Corey ◽  
Matthew S. McClung ◽  
...  

Irish dance has evolved in aesthetics that lead to greater physical demands on dancers' bodies. Irish dancers must land from difficult moves without letting their knees bend or heels touch the ground, causing large forces to be absorbed by the body. The majority of injuries incurred by Irish dancers are due to overuse (79.6%). The purpose of this study was to determine loads on the body of female Irish dancers, including peak force, rise rate of force, and impulse, in eight common Irish hard shoe and soft shoe dance movements. It was hypothesized that these movements would produce different ground reac- tion force (GRF) characteristics. Sixteen female Irish dancers were recruited from the three highest competitive levels. Each performed a warm-up, reviewed the eight movements, and then performed each movement three times on a force plate, four in soft shoes and four in hard shoes. Ground reaction forces were measured using a three-dimensional force plate recording at 1,000 Hz. Peak force, rise rate, and vertical impulse were calculated. Peak forces normalized by each dancer's body weight for each of these variables were significantly different between move- ments and shoe types [F(15, 15)= 65.4, p < 0.01; F(15, 15) = 65.0, p < 0.01; and F(15, 15) = 67.4, p < 0.01, respectively]. The variable years of experience was not correlated with peak force, rise rate, or impulse (p > 0.40). It is concluded that there was a large range in GRF characteristics among the eight movements studied. Understanding the force of each dance step will allow instructors to develop training routines that help dancers adapt gradually to the high forces experienced in Irish dance training and competitions, thereby limiting the potential for overuse injuries.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
T. S. Amer

In this paper, we will focus on the dynamical behavior of a rigid body suspended on an elastic spring as a pendulum model with three degrees of freedom. It is assumed that the body moves in a rotating vertical plane uniformly with an arbitrary angular velocity. The relative periodic motions of this model are considered. The governing equations of motion are obtained using Lagrange’s equations and represent a nonlinear system of second-order differential equations that can be solved in terms of generalized coordinates. The numerical solutions are investigated using the fourth-order Runge-Kutta algorithms through Matlab packages. These solutions are represented graphically in order to describe and discuss the behavior of the body at any instant for different values of the physical parameters of the body. The obtained results have been discussed and compared with some previous published works. Some concluding remarks have been presented at the end of this work. The importance of this work is due to its numerous applications in life such as the vibrations that occur in buildings and structures.


1987 ◽  
Vol 109 (3) ◽  
pp. 210-217 ◽  
Author(s):  
Farid M. L. Amirouche

A computer-automated approach for studying the human body vibration is presented. This includes vertical, horizontal, and torsional vibration. The procedure used is based on Finite Segment Modeling (FSM) of the human body, thus treating it as a mechanical structure. Kane’s equations as developed by Huston et al. are used to formulate the governing equations of motion. The connective tissues are modeled by springs and dampers. In addition, the paper presents the transient response of different parts of the body due to a sinusoidal forcing function as well as an impulse function applied to the lower torso in the vertical direction.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3033
Author(s):  
Devashish Pandey ◽  
Xavier Oriols ◽  
Guillermo Albareda

The so-called Born–Huang ansatz is a fundamental tool in the context of ab-initio molecular dynamics, viz., it allows effectively separating fast and slow degrees of freedom and thus treating electrons and nuclei with different mathematical footings. Here, we consider the use of a Born–Huang-like expansion of the three-dimensional time-dependent Schrödinger equation to separate transport and confinement degrees of freedom in electron transport problems that involve geometrical constrictions. The resulting scheme consists of an eigenstate problem for the confinement degrees of freedom (in the transverse direction) whose solution constitutes the input for the propagation of a set of coupled one-dimensional equations of motion for the transport degree of freedom (in the longitudinal direction). This technique achieves quantitative accuracy using an order less computational resources than the full dimensional simulation for a typical two-dimensional geometrical constriction and upto three orders for three-dimensional constriction.


Sign in / Sign up

Export Citation Format

Share Document