scholarly journals Multicriteria Group Decision Making by Using Trapezoidal Valued Hesitant Fuzzy Sets

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Tabasam Rashid ◽  
Syed Muhammad Husnine

The concept of trapezoidal valued hesitant fuzzy set is introduced. Notion for distance between any two trapezoidal valued hesitant fuzzy elements is given. Using this proposed distance measure, we extend the technique for order preference by similarity to ideal solution for trapezoidal valued hesitant fuzzy sets. An example is constructed to show usefulness of this extension for multicriteria group decision making, where the opinions about the criteria values are expressed as trapezoidal valued hesitant fuzzy set.

2019 ◽  
Vol 9 (6) ◽  
pp. 1232 ◽  
Author(s):  
Zia Bashir ◽  
Yasir Bashir ◽  
Tabasam Rashid ◽  
Jawad Ali ◽  
Wei Gao

Making decisions are very common in the modern socio-economic environments. However, with the increasing complexity of the social, today’s decision makers (DMs) face such problems in which they hesitate and irresolute to provide their views. To cope with these uncertainties, many generalizations of fuzzy sets are designed, among them dual hesitant fuzzy set (DHFS) is quite resourceful and efficient in solving problems of a more vague nature. In this article, a novel concept called proportional dual hesitant fuzzy set (PDHFS) is proposed to further improve DHFS. The PDHFS is a flexible tool composed of some possible membership values and some possible non-membership values along with their associated proportions. In the theme of PDHFS, the proportions of membership values and non-membership values are considered to be independent. Some basic operations, properties, distance measure and comparison method are studied for the proposed set. Thereafter, a novel approach based on PDHFSs is developed to solve problems for multi-attribute group decision-making (MAGDM) in a fuzzy situation. It is totally different from the traditional approach. Finally, a practical example is given in order to elaborate the proposed method for the selection of the best alternative and detailed comparative analysis is given in order to validate the practicality.


2021 ◽  
pp. 1-12
Author(s):  
Muhammad Naeem ◽  
Muhammad Ali Khan ◽  
Saleem Abdullah ◽  
Muhammad Qiyas ◽  
Saifullah Khan

Probabilistic hesitant fuzzy Set (PHFs) is the most powerful and comprehensive idea to support more complexity than developed fuzzy set (FS) frameworks. In this paper, it can explain a novel, improved TOPSIS-based method for multi-criteria group decision-making (MCGDM) problem through the Probabilistic hesitant fuzzy environment, in which the weights of both experts and criteria are completely unknown. Firstly, we discuss the concept of PHFs, score functions and the basic operating laws of PHFs. In fact, to compute the unknown weight information, the generalized distance measure for PHFs was defined based on the Probabilistic hesitant fuzzy entropy measure. Second, MCGDM will be presented with the PHF information-based decision-making process.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 342 ◽  
Author(s):  
Krishankumar ◽  
Ravichandran ◽  
Ahmed ◽  
Kar ◽  
Peng

As a powerful generalization to fuzzy set, hesitant fuzzy set (HFS) was introduced, which provided multiple possible membership values to be associated with a specific instance. But HFS did not consider occurrence probability values, and to circumvent the issue, probabilistic HFS (PHFS) was introduced, which associates an occurrence probability value with each hesitant fuzzy element (HFE). Providing such a precise probability value is an open challenge and as a generalization to PHFS, interval-valued PHFS (IVPHFS) was proposed. IVPHFS provided flexibility to decision makers (DMs) by associating a range of values as an occurrence probability for each HFE. To enrich the usefulness of IVPHFS in multi-attribute group decision-making (MAGDM), in this paper, we extend the Muirhead mean (MM) operator to IVPHFS for aggregating preferences. The MM operator is a generalized operator that can effectively capture the interrelationship between multiple attributes. Some properties of the proposed operator are also discussed. Then, a new programming model is proposed for calculating the weights of attributes using DMs’ partial information. Later, a systematic procedure is presented for MAGDM with the proposed operator and the practical use of the operator is demonstrated by using a renewable energy source selection problem. Finally, the strengths and weaknesses of the proposal are discussed in comparison with other methods.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 472 ◽  
Author(s):  
Yuan Xu ◽  
Xiaopu Shang ◽  
Jun Wang ◽  
Wen Wu ◽  
Huiqun Huang

The q-rung orthopair fuzzy sets (q-ROFSs), originated by Yager, are good tools to describe fuzziness in human cognitive processes. The basic elements of q-ROFSs are q-rung orthopair fuzzy numbers (q-ROFNs), which are constructed by membership and nonmembership degrees. As realistic decision-making is very complicated, decision makers (DMs) may be hesitant among several values when determining membership and nonmembership degrees. By incorporating dual hesitant fuzzy sets (DHFSs) into q-ROFSs, we propose a new technique to deal with uncertainty, called q-rung dual hesitant fuzzy sets (q-RDHFSs). Subsequently, we propose a family of q-rung dual hesitant fuzzy Heronian mean operators for q-RDHFSs. Further, the newly developed aggregation operators are utilized in multiple attribute group decision-making (MAGDM). We used the proposed method to solve a most suitable supplier selection problem to demonstrate its effectiveness and usefulness. The merits and advantages of the proposed method are highlighted via comparison with existing MAGDM methods. The main contribution of this paper is that a new method for MAGDM is proposed.


2019 ◽  
Vol 8 (1) ◽  
pp. 17
Author(s):  
Awanda Amelia Maron ◽  
Yudiantri Asdi

Chen dan Xu memperkenalkan tentang relasi preference hesitant bernilai interval dalam proses pengambilan keputusan kelompok(Group Decision Making/GDM ) [2]. Pada proses GDM digunakan operator-operator untuk mengumpulkan informasi Interval-valued Hesitant Fuzzy Set (IVHFS) [2]. Konsep himpunan kabur hesitant bernilai interval banyak digunakan pada teori pengambilan keputusan. akan tetapi pada penelitian ini hanya dibatasi kajian aljabar yaitu dikaji tentang sifat-sifat operasi pada elemen kabur hesitant bernilai interval dan bentuk operator-operator pada IVHFS. Operasi ring sum, ring product, irisan dan gabungan pada elemen kabur hesitant bernilai interval memenuhi sifat-sifat aljabar yaitu sifat komutatif, sifat asosiatif, sifat distributif. Bentuk operator-operator pada himpunan kabur hesitant bernilai interval yaitu operator GIVHFWA, GIVHFWG dan operator GIVHFOWA, GIVHFOWG.Kata Kunci :himpunan kabur hesitant bernilai interval, sifat-sifat operasi, operator


2017 ◽  
Vol 33 (6) ◽  
pp. 3971-3985 ◽  
Author(s):  
Muhammad Sajjad Ali Khan ◽  
Saleem Abdullah ◽  
Asad Ali ◽  
Nasir Siddiqui ◽  
Fazli Amin

Sign in / Sign up

Export Citation Format

Share Document