scholarly journals Nonlinear Langevin Equation of Hadamard-Caputo Type Fractional Derivatives with Nonlocal Fractional Integral Conditions

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Jessada Tariboon ◽  
Sotiris K. Ntouyas ◽  
Chatthai Thaiprayoon

We study existence and uniqueness of solutions for a problem consisting of nonlinear Langevin equation of Hadamard-Caputo type fractional derivatives with nonlocal fractional integral conditions. A variety of fixed point theorems are used, such as Banach’s fixed point theorem, Krasnoselskii’s fixed point theorem, Leray-Schauder’s nonlinear alternative, and Leray-Schauder’s degree theory. Enlightening examples illustrating the obtained results are also presented.

2017 ◽  
Vol 33 (2) ◽  
pp. 207-217
Author(s):  
WENJUN LIU ◽  
◽  
HEFENG ZHUANG ◽  

In this paper, we investigate the existence results for Caputo fractional boundary value problems with integral conditions. Our analysis relies on Banach’s contraction principle, Leray-Schauder nonlinear alternative, Boyed and Wong fixed point theorem, and Krasnoselskii’s fixed point theorem. As applications, some examples are provided to illustrate our main results.


2017 ◽  
Vol 25 (2) ◽  
pp. 5-24 ◽  
Author(s):  
Bashir Ahmad ◽  
Sotiris K. Ntouyas

Abstract In this paper, we discus the existence of solutions for Riemann- Liouville fractional differential inclusions supplemented with Erdélyi- Kober fractional integral conditions. We apply endpoint theory, Krasnoselskii’s multi-valued fixed point theorem and Wegrzyk's fixed point theorem for generalized contractions. For the illustration of our results, we include examples.


2021 ◽  
Vol 26 (6) ◽  
pp. 1087-1105
Author(s):  
Yuxin Zhang ◽  
Xiping Liu ◽  
Mei Jia

In this paper, we study the multi-point boundary value problems for a new kind of piecewise differential equations with left and right fractional derivatives and delay. In this system, the state variables satisfy the different equations in different time intervals, and they interact with each other through positive and negative delay. Some new results on the existence, no-existence and multiplicity for the positive solutions of the boundary value problems are obtained by using Guo–Krasnoselskii’s fixed point theorem and Leggett–Williams fixed point theorem. The results for existence highlight the influence of perturbation parameters. Finally, an example is given out to illustrate our main results.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Athasit Wongcharoen ◽  
Bashir Ahmad ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

We discuss the existence and uniqueness of solutions for the Langevin fractional differential equation and its inclusion counterpart involving the Hilfer fractional derivatives, supplemented with three-point boundary conditions by means of standard tools of the fixed-point theorems for single and multivalued functions. We make use of Banach’s fixed-point theorem to obtain the uniqueness result, while the nonlinear alternative of the Leray-Schauder type and Krasnoselskii’s fixed-point theorem are applied to obtain the existence results for the single-valued problem. Existence results for the convex and nonconvex valued cases of the inclusion problem are derived via the nonlinear alternative for Kakutani’s maps and Covitz and Nadler’s fixed-point theorem respectively. Examples illustrating the obtained results are also constructed. (2010) Mathematics Subject Classifications. This study is classified under the following classification codes: 26A33; 34A08; 34A60; and 34B15.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Thanin Sitthiwirattham ◽  
Jessada Tariboon ◽  
Sotiris K. Ntouyas

We study a new class of three-point boundary value problems of nonlinear second-orderq-difference equations. Our problems contain different numbers ofqin derivatives and integrals. By using a variety of fixed point theorems (such as Banach’s contraction principle, Boyd and Wong fixed point theorem for nonlinear contractions, Krasnoselskii’s fixed point theorem, and Leray-Schauder nonlinear alternative) and Leray-Schauder degree theory, some new existence and uniqueness results are obtained. Illustrative examples are also presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Mahmoud Bousselsal ◽  
Sidi Hamidou Jah

We study the existence of solutions of a nonlinear Volterra integral equation in the space L1[0,+∞). With the help of Krasnoselskii’s fixed point theorem and the theory of measure of weak noncompactness, we prove an existence result for a functional integral equation which includes several classes on nonlinear integral equations. Our results extend and generalize some previous works. An example is given to support our results.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Naveed Ahmad ◽  
Zeeshan Ali ◽  
Kamal Shah ◽  
Akbar Zada ◽  
Ghaus ur Rahman

We study the existence, uniqueness, and various kinds of Ulam–Hyers stability of the solutions to a nonlinear implicit type dynamical problem of impulsive fractional differential equations with nonlocal boundary conditions involving Caputo derivative. We develop conditions for uniqueness and existence by using the classical fixed point theorems such as Banach fixed point theorem and Krasnoselskii’s fixed point theorem. For stability, we utilized classical functional analysis. Also, an example is given to demonstrate our main theoretical results.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 694
Author(s):  
V. Usha ◽  
M. Mallika Arjunan

In this manuscript, we work to accomplish the Krasnoselskii's fixed point theorem to analyze the existence results for an impulsive neutral integro-differential equations  with infinite delay and non-instantaneous impulses in Banach spaces. By deploying the fixed point theorem with semigroup theory, we developed the coveted outcomes.   


2021 ◽  
Vol 5 (4) ◽  
pp. 200
Author(s):  
Fatemeh Mottaghi ◽  
Chenkuan Li ◽  
Thabet Abdeljawad ◽  
Reza Saadati ◽  
Mohammad Bagher Ghaemi

Using Krasnoselskii’s fixed point theorem and Arzela–Ascoli theorem, we investigate the existence of solutions for a system of nonlinear ϕ-Hilfer fractional differential equations. Moreover, applying an alternative fixed point theorem due to Diaz and Margolis, we prove the Kummer stability of the system on the compact domains. We also apply our main results to study the existence and Kummer stability of Lotka–Volterra’s equations that are useful to describe and characterize the dynamics of biological systems.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Azizollah Babakhani ◽  
Dumitru Baleanu ◽  
Ravi P. Agarwal

We prove the existence and uniqueness of solutions for two classes of infinite delay nonlinear fractional order differential equations involving Riemann-Liouville fractional derivatives. The analysis is based on the alternative of the Leray-Schauder fixed-point theorem, the Banach fixed-point theorem, and the Arzela-Ascoli theorem inΩ={y:(−∞,b]→ℝ:y|(−∞,0]∈ℬ}such thaty|[0,b]is continuous andℬis a phase space.


Sign in / Sign up

Export Citation Format

Share Document