scholarly journals Passenger Flow Prediction of Subway Transfer Stations Based on Nonparametric Regression Model

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yujuan Sun ◽  
Guanghou Zhang ◽  
Huanhuan Yin

Passenger flow is increasing dramatically with accomplishment of subway network system in big cities of China. As convergence nodes of subway lines, transfer stations need to assume more passengers due to amount transfer demand among different lines. Then, transfer facilities have to face great pressure such as pedestrian congestion or other abnormal situations. In order to avoid pedestrian congestion or warn the management before it occurs, it is very necessary to predict the transfer passenger flow to forecast pedestrian congestions. Thus, based on nonparametric regression theory, a transfer passenger flow prediction model was proposed. In order to test and illustrate the prediction model, data of transfer passenger flow for one month in XIDAN transfer station were used to calibrate and validate the model. By comparing with Kalman filter model and support vector machine regression model, the results show that the nonparametric regression model has the advantages of high accuracy and strong transplant ability and could predict transfer passenger flow accurately for different intervals.

Transport ◽  
2011 ◽  
Vol 26 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Qian Chen ◽  
Wenquan Li ◽  
Jinhuan Zhao

Transit flow is the basement of transit planning and scheduling. The paper presents a new transit flow prediction model based on Least Squares Support Vector Machine (LS-SVM). With reference to the theory of Support Vector Machine and Genetic Algorithm, a new short-term passenger flow prediction model is built employing LSSVM, and a new evaluation indicator is used for presenting training permanence. An improved genetic algorithm is designed by enhancing crossover and variation in the use of optimizing the penalty parameter γ and kernel parameter s in LS-SVM. By using this method, passenger flow in a certain bus route is predicted in Changchun. The obtained result shows that there is little difference between actual value and prediction, and the majority of the equal coefficients of a training set are larger than 0.90, which shows the validity of the approach. Santrauka Tranzito srautas yra tranzito planavimo ir eismo tvarkaraščių sudarymo pagrindas. Straipsnis pateikia naują tranzitinio srauto prognozavimo modelį, grindžiamą mažiausių kvadratų atraminių vektorių metodu (Least Squares Support Vector machine, LS-SVm). Remiantis atraminių vektorių metodu (Support Vector machine) ir genetiniu algoritmu (Genetic Algorithm), sudarytas naujas trumpalaikis keleivių srauto prognozavimo modelis, pasitelkiant LS-SVM ir pristatomas naujas vertinimo rodiklis. Taikant naują metodą prognozuojamas keleivių srautas konkrečiame autobuso maršrute Čangčuno mieste Kinijoje. Gautos prognozės rezultatai lyginami su faktiniais. Резюме Транзитный поток – основной фактор при планировании транзита и составлении расписаний движения. В статье представлена новая модель прогноз*а транзитного потока, основанная на методе опорных векторов с квадратичной функцией потерь (Least Squares Support Vector machine – LS-SVm). Представленный новый метод используется для прогноза потока пассажиров на конкретном автобусном маршруте города Чаньчуня (Китай). Результаты прогноза сравниваются с фактическими результатами.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Tianyang Wang

Hospitality industry plays a crucial role in the development of tourism. Predicting the future demand of a hotel is a key step in the process of hotel revenue management. Hotel passenger flow prediction plays an important role in guiding the formulation of hotel pricing and operating strategies. On the one hand, hotel passenger flow prediction can provide decision support for hotel managers and effectively avoid the waste of hotel resources and loss of revenue caused by the loss of customers. On the other hand, it is the guarantee of the priority occupation of business opportunities by hotel enterprises, which can help hotel enterprises adjust their operation strategies reasonably to better adapt to the market situation. In addition, hotel passenger flow prediction is helpful to judge the overall operating condition of the hotel industry and assess the risk level of the hotel project to be built. Hotel passenger flow is affected by many factors, such as weather, environment, season, holidays, economy, and emergencies, and has the characteristics of complex nonlinear fluctuation. The existing demand predicting methods include linear methods and nonlinear methods. The linear prediction methods rely on the stability of environment and time series, so they cannot completely simulate the complex nonlinear fluctuations characteristics of hotel passenger flow. Traditional nonlinear prediction methods need to improve the prediction accuracy, and they are difficult to deal with the increasing data of hotel passenger flow. Based on the above analysis, this paper constructs a deep learning prediction model based on Long Short-Term Memory (LSTM) to predict the number of actual monthly arrival bookings. The number of actual monthly arrival bookings can reflect the actual monthly passenger flow of a hotel. The prediction model can effectively reduce the loss caused by cancellation or nonarrival of bookings due to various reasons and improve the hotel revenue. The experimental part of this paper is based on the booking demand dataset of a resort hotel in Portugal from July 1, 2015, to August 31, 2017. Artificial neural network (ANN) and support vector regression (SVR) are built as benchmark models to predict the number of actual monthly arrival bookings of this hotel. The experimental results show that, compared with the benchmark models, the LSTM model can effectively improve the prediction ability and provide necessary reference for the hotel's future pricing decision and operation mode arrangement.


2021 ◽  
Author(s):  
Likai Chen ◽  
Ekaterina Smetanina ◽  
Wei Biao Wu

Abstract This paper presents a multiplicative nonstationary nonparametric regression model which allows for a broad class of nonstationary processes. We propose a three-step estimation procedure to uncover the conditional mean function and establish uniform convergence rates and asymptotic normality of our estimators. The new model can also be seen as a dimension-reduction technique for a general two-dimensional time-varying nonparametric regression model, which is especially useful in small samples and for estimating explicitly multiplicative structural models. We consider two applications: estimating a pricing equation for the US aggregate economy to model consumption growth, and estimating the shape of the monthly risk premium for S&P 500 Index data.


2018 ◽  
Vol 15 (2) ◽  
pp. 20 ◽  
Author(s):  
Budi Lestari

Abstract Regression model of bi-respond nonparametric is a regression model which is illustrating of the connection pattern between respond variable and one or more predictor variables, where between first respond and second respond have correlation each other. In this paper, we discuss the estimating functions of regression in regression model of bi-respond nonparametric by using different two estimation techniques, namely, smoothing spline and kernel. This study showed that for using smoothing spline and kernel, the estimator function of regression which has been obtained in observation is a regression linier. In addition, both estimators that are obtained from those two techniques are systematically only different on smoothing matrices. Keywords: kernel estimator, smoothing spline estimator, regression function, bi-respond nonparametric regression model. AbstrakModel regresi nonparametrik birespon adalah suatu model regresi yang menggambarkan pola hubungan antara dua variabel respon dan satu atau beberapa variabel prediktor dimana antara respon pertama dan respon kedua berkorelasi. Dalam makalah ini dibahas estimasi fungsi regresi dalam  model regresi nonparametrik birespon menggunakan dua teknik estimasi yang berbeda, yaitu smoothing spline dan kernel. Hasil studi ini menunjukkan bahwa, baik menggunakan smoothing spline maupun menggunakan kernel, estimator fungsi regresi yang didapatkan merupakan fungsi linier dalam observasi. Selain itu, kedua estimator fungsi regresi yang didapatkan dari kedua teknik estimasi tersebut secara matematis hanya dibedakan oleh matriks penghalusnya.Kata Kunci : Estimator Kernel, Estimator Smoothing Spline, Fungsi Regresi, Model Regresi Nonparametrik Birespon.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Fengkai Liu ◽  
Xingmin Ma ◽  
Xingshuo An ◽  
Guangnan Liang

Urban traffic flow prediction has always been an important realm for smart city build-up. With the development of edge computing technology in recent years, the network edge nodes of smart cities are able to collect and process various types of urban traffic data in real time, which leads to the possibility of deploying intelligent traffic prediction technology with real-time analysis and timely feedback on the edge. In view of the strong nonlinear characteristics of urban traffic flow, multiple dynamic and static influencing factors involved, and increasing difficulty of short-term traffic flow prediction in a metropolitan area, this paper proposes an urban traffic flow prediction model based on chaotic particle swarm optimization algorithm-smooth support vector machine (CPSO/SSVM). The prediction model has built a new second-order smooth function to achieve better approximation and regression effects and has further improved the computational efficiency of the smooth support vector machine algorithm through chaotic particle swarm optimization. Simulation experiment results show that this model can accurately predict urban traffic flow.


Sign in / Sign up

Export Citation Format

Share Document