scholarly journals Weak Solutions for a Sixth Order Cahn-Hilliard Type Equation with Degenerate Mobility

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Aibo Liu ◽  
Changchun Liu

We study an initial-boundary problem for a sixth order Cahn-Hilliard type equation, which arises in oil-water-surfactant mixtures. An existence result for the problem with a concentration dependent diffusional mobility in three space dimensions is presented.

2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Zhao Wang ◽  
Changchun Liu

We study the initial boundary value problem for a sixth-order Cahn-Hilliard-type equation which describes the separation properties of oil-water mixtures, when a substance enforcing the mixing of the phases is added. We show that the solutions might not be classical globally. In other words, in some cases, the classical solutions exist globally, while in some other cases, such solutions blow up at a finite time. We also discuss the existence of global attractor.


2011 ◽  
Vol 10 (6) ◽  
pp. 1823-1847 ◽  
Author(s):  
Irena Pawłow ◽  
Wojciech M. Zajączkowski

2017 ◽  
Vol 22 (1-2) ◽  
pp. 27-32
Author(s):  
A. V. Duzheva

In this article, we consider a question of sovability of an inverse problem for a linear hyprbolic equation. Properties of the solution of an associated nonlocal initial-boundary problem with displacement in boundary conditions are used to develop an existence result for the identification of the unknown source. Overdetermination is represented as integral with respect to time-variable.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Changming Song ◽  
Jina Li ◽  
Ran Gao

We are concerned with the singularly perturbed Boussinesq-type equation including the singularly perturbed sixth-order Boussinesq equation, which describes the bidirectional propagation of small amplitude and long capillary-gravity waves on the surface of shallow water for bond number (surface tension parameter) less than but very close to 1/3. The nonexistence of global solution to the initial boundary value problem for the singularly perturbed Boussinesq-type equation is discussed and two examples are given.


2016 ◽  
Vol 66 (1) ◽  
Author(s):  
Changchun Liu ◽  
Zhao Wang

AbstractIn this paper, we study the time periodic solution of a sixth order nonlinear parabolic equation, which arises in oil-water-surfactant mixtures based on Leray-Schauder’s fixed point theorem, we prove the existence of time-periodic solutions.


Author(s):  
Shakirbai G. Kasimov ◽  
◽  
Mahkambek M. Babaev ◽  
◽  

The paper studies a problem with initial functions and boundary conditions for partial differential partial equations of fractional order in partial derivatives with a delayed time argument, with degree Laplace operators with spatial variables and nonlocal boundary conditions in Sobolev classes. The solution of the initial boundary-value problem is constructed as the series’ sum in the eigenfunction system of the multidimensional spectral problem. The eigenvalues are found for the spectral problem and the corresponding system of eigenfunctions is constructed. It is shown that the system of eigenfunctions is complete and forms a Riesz basis in the Sobolev subspace. Based on the completeness of the eigenfunctions system the uniqueness theorem for solving the problem is proved. In the Sobolev subspaces the existence of a regular solution to the stated initial-boundary problem is proved.


Sign in / Sign up

Export Citation Format

Share Document