scholarly journals Stability Analysis of a Class of Higher Order Difference Equations

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Yuanyuan Liu ◽  
Fanwei Meng

We consider the sufficient conditions for asymptotic stability and instability of certain higher order nonlinear difference equations with infinite delays in finite-dimensional spaces. With the aid of the general comparison condition on the right-hand side functionfk(·), we generalize the stability and instability result.

Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1751
Author(s):  
Oana Brandibur ◽  
Eva Kaslik ◽  
Dorota Mozyrska ◽  
Małgorzata Wyrwas

Linear autonomous incommensurate systems that consist of two fractional-order difference equations of Caputo-type are studied in terms of their asymptotic stability and instability properties. More precisely, the asymptotic stability of the considered linear system is fully characterized, in terms of the fractional orders of the considered Caputo-type differences, as well as the elements of the linear system’s matrix and the discretization step size. Moreover, fractional-order-independent sufficient conditions are also derived for the instability of the system under investigation. With the aim of exemplifying the theoretical results, a fractional-order discrete version of the FitzHugh–Nagumo neuronal model is constructed and analyzed. Furthermore, numerical simulations are undertaken in order to substantiate the theoretical findings, showing that the membrane potential may exhibit complex bursting behavior for suitable choices of the model parameters and fractional orders of the Caputo-type differences.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Tuğba Yalçın Uzun

AbstractIn this paper, we study the oscillation behavior for higher order nonlinear Hilfer fractional difference equations of the type $$\begin{aligned}& \Delta _{a}^{\alpha ,\beta }y(x)+f_{1} \bigl(x,y(x+\alpha ) \bigr) =\omega (x)+f_{2} \bigl(x,y(x+ \alpha ) \bigr),\quad x\in \mathbb{N}_{a+n-\alpha }, \\& \Delta _{a}^{k-(n-\gamma )}y(x) \big|_{x=a+n-\gamma } = y_{k}, \quad k= 0,1,\ldots,n, \end{aligned}$$ Δ a α , β y ( x ) + f 1 ( x , y ( x + α ) ) = ω ( x ) + f 2 ( x , y ( x + α ) ) , x ∈ N a + n − α , Δ a k − ( n − γ ) y ( x ) | x = a + n − γ = y k , k = 0 , 1 , … , n , where $\lceil \alpha \rceil =n$ ⌈ α ⌉ = n , $n\in \mathbb{N}_{0}$ n ∈ N 0 and $0\leq \beta \leq 1$ 0 ≤ β ≤ 1 . We introduce some sufficient conditions for all solutions and give an illustrative example for our results.


2009 ◽  
Vol 16 (4) ◽  
pp. 597-616
Author(s):  
Shota Akhalaia ◽  
Malkhaz Ashordia ◽  
Nestan Kekelia

Abstract Necessary and sufficient conditions are established for the stability in the Lyapunov sense of solutions of a linear system of generalized ordinary differential equations 𝑑𝑥(𝑡) = 𝑑𝐴(𝑡) · 𝑥(𝑡) + 𝑑𝑓(𝑡), where and are, respectively, matrix- and vector-functions with bounded total variation components on every closed interval from . The results are realized for the linear systems of impulsive, ordinary differential and difference equations.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Yuhua Long ◽  
Shaohong Wang ◽  
Jiali Chen

Abstract In the present paper, a class of fourth-order nonlinear difference equations with Dirichlet boundary conditions or periodic boundary conditions are considered. Based on the invariant sets of descending flow in combination with the mountain pass lemma, we establish a series of sufficient conditions on the existence of multiple solutions for these boundary value problems. In addition, some examples are provided to demonstrate the applicability of our results.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 108
Author(s):  
Kgatliso Mkhwanazi ◽  
Mensah Folly-Gbetoula

We perform Lie analysis for a system of higher order difference equations with variable coefficients and derive non-trivial symmetries. We use these symmetries to find exact formulas for the solutions in terms of k. Furthermore, a detailed study for a specific value of k is presented. Our findings generalize some results in the literature.


Sign in / Sign up

Export Citation Format

Share Document