scholarly journals Global Attractivity of Positive Periodic Solution for a Delayed Predator-Prey System with Diffusion and Impulses

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Yuanfu Shao ◽  
Xiaolan Xie ◽  
Zhixiang Ju

By constructing a suitable Lyapunov functional, the global attractivity of positive periodic solutions for a delayed predator-prey system with diffusion and impulses is studied in this paper. Finally, an example and numerical analysis are given to show the effectiveness of the main results.

2012 ◽  
Vol 05 (02) ◽  
pp. 1250031
Author(s):  
Changjin Xu ◽  
Maoxin Liao

In this paper, by using the continuation theorem of coincidence degree theory, a sufficient condition of existence of positive periodic solutions is obtained for an stage-structured three-species predator–prey system with Beddington–DeAngelis and Holling IV functional response. By constructing a suitable Lyapunov functional, the uniqueness and global attractivity of the positive periodic solution are presented. Our result is a good complement to the earlier publications.


2005 ◽  
Vol 2005 (2) ◽  
pp. 153-169 ◽  
Author(s):  
Fengde Chen

With the help of a continuation theorem based on Gaines and Mawhin's coincidence degree, easily verifiable criteria are established for the global existence of positive periodic solutions of a delayed ratio-dependent predator-prey system with stage structure for predator. The approach involves some new technique of priori estimate. For the system without delay, by constructing a suitable Lyapunov function, some sufficient conditions which guarantee the existence of a unique global attractive positive periodic solution are obtained. Those results have further applications in population dynamics.


2009 ◽  
Vol 02 (04) ◽  
pp. 419-442 ◽  
Author(s):  
FENGYAN ZHOU

A new non-autonomous predator-prey system with the effect of viruses on the prey is investigated. By using the method of coincidence degree, some sufficient conditions are obtained for the existence of a positive periodic solution. Moreover, with the help of an appropriately chosen Lyapunov function, the global attractivity of the positive periodic solution is discussed. In the end, a numerical simulation is used to illustrate the feasibility of our results.


2011 ◽  
Vol 2011 ◽  
pp. 1-28 ◽  
Author(s):  
Changjin Xu ◽  
Daxue Chen

A class of nonautonomous two-species competitive system with stage structure and impulse is considered. By using the continuation theorem of coincidence degree theory, we derive a set of easily verifiable sufficient conditions that guarantee the existence of at least a positive periodic solution, and, by constructing a suitable Lyapunov functional, the uniqueness and global attractivity of the positive periodic solution are presented. Finally, an illustrative example is given to demonstrate the correctness of the obtained results.


2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Zhenguo Luo ◽  
Jianhua Huang ◽  
Liping Luo ◽  
Binxiang Dai

Suffiicient and realistic conditions are established in this paper for the existence and global attractivity of a positive periodic solution to the neutral multidelay logarithmic population model with impulse by using the theory of abstract continuous theorem of k-set contractive operator and some inequality techniques. The results improve and generalize the known ones in Li 1999, Lu and Ge 2004, Y. Luo and Z. G. Luo 2010, and Wang et al. 2009. As an application, we also give an example to illustrate the feasibility of our main results.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Zheyan Zhou

We propose a discrete multispecies cooperation and competition predator-prey systems. For general nonautonomous case, sufficient conditions which ensure the permanence and the global stability of the system are obtained; for periodic case, sufficient conditions which ensure the existence of a globally stable positive periodic solution of the system are obtained.


2003 ◽  
Vol 45 (2) ◽  
pp. 233-244 ◽  
Author(s):  
Zhengqiu Zhang ◽  
Zhicheng Wang

AbstractBy using the continuation theorem of coincidence degree theory, a sufficient condition is obtained for the existence of a positive periodic solution of a predator-prey diffusion system.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sekson Sirisubtawee ◽  
Nattawut Khansai ◽  
Akapak Charoenloedmongkhon

AbstractIn the present article, we propose and analyze a new mathematical model for a predator–prey system including the following terms: a Monod–Haldane functional response (a generalized Holling type IV), a term describing the anti-predator behavior of prey populations and one for an impulsive control strategy. In particular, we establish the existence condition under which the system has a locally asymptotically stable prey-eradication periodic solution. Violating such a condition, the system turns out to be permanent. Employing bifurcation theory, some conditions, under which the existence and stability of a positive periodic solution of the system occur but its prey-eradication periodic solution becomes unstable, are provided. Furthermore, numerical simulations for the proposed model are given to confirm the obtained theoretical results.


2006 ◽  
Vol 73 (2) ◽  
pp. 175-182 ◽  
Author(s):  
Jifeng Chu ◽  
Xiaoning Lin ◽  
Daqing Jiang ◽  
Donal O'Regan ◽  
R. P. Agarwal

In this paper, we study the existence of positive periodic solutions to the equation x″ = f (t, x). It is proved that such a equation has more than one positive periodic solution when the nonlinearity changes sign. The proof relies on a fixed point theorem in cones.


Sign in / Sign up

Export Citation Format

Share Document