scholarly journals A New Model for Capturing the Spread of Computer Viruses on Complex-Networks

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Chunming Zhang ◽  
Tianliang Feng ◽  
Yun Zhao ◽  
Guifeng Jiang

Based on complex network, this paper proposes a novel computer virus propagation model which is motivated by the traditional SEIRQ model. A systematic analysis of this new model shows that the virus-free equilibrium is globally asymptotically stable when its basic reproduction is less than one, and the viral equilibrium is globally attractive when the basic reproduction is greater than one. Some numerical simulations are finally given to illustrate the main results, implying that these results are applicable to depict the dynamics of virus propagation.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jianguo Ren ◽  
Yonghong Xu

A new computer virus propagation model with delay and incomplete antivirus ability is formulated and its global dynamics is analyzed. The existence and stability of the equilibria are investigated by resorting to the threshold valueR0. By analysis, it is found that the model may undergo a Hopf bifurcation induced by the delay. Correspondingly, the critical value of the Hopf bifurcation is obtained. Using Lyapunov functional approach, it is proved that, under suitable conditions, the unique virus-free equilibrium is globally asymptotically stable ifR0<1, whereas the virus equilibrium is globally asymptotically stable ifR0>1. Numerical examples are presented to illustrate possible behavioral scenarios of the mode.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Xiaofan Yang ◽  
Bei Liu ◽  
Chenquan Gan

With the rapid popularization of the Internet, computers can enter or leave the Internet increasingly frequently. In fact, no antivirus software can detect and remove all sorts of computer viruses. This implies that viruses would persist on the Internet. To better understand the spread of computer viruses in these situations, a new propagation model is established and analyzed. The unique equilibrium of the model is globally asymptotically stable, in accordance with the reality. A parameter analysis of the equilibrium is also conducted.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Chunming Zhang

This paper presents a new linear computer viruses propagation model on multilayer networks to explore the mechanism of computer virus propagation. Theoretical analysis demonstrates that the maximum eigenvalue of the sum of all the subnetworks is a vital factor in determining the viral prevalence. And then, a new sufficient condition for the global stability of virus-free equilibrium has been obtained. The persistence of computer virus propagation system has also been proved. Eventually, some numerical simulation results verify the main conclusions of the theoretical analysis.


2014 ◽  
Vol 114 (1) ◽  
pp. 86-106
Author(s):  
Pei-Chen Sung ◽  
Cheng-Yuan Ku ◽  
Chien-Yuan Su

Purpose – Understanding the computer-virus propagation is quite essential for the construction and development of anti-virus policy. While researches about the anti-virus policy have been extensively investigated, the viewpoint from sociological perspective is relatively ignored. Therefore, this paper aims to explore the dynamics of computer-virus propagation and evaluate the effectiveness of anti-virus policies through the sociological perspective. Design/methodology/approach – This research constructs a virus-propagation model based on the susceptible-exposed-infective-recovered epidemic concept to simulate and explore the dynamic behavior of multipartite computer viruses through the tool of system dynamics. The effectiveness of various anti-virus policies is then evaluated via this model. Findings – The frequency of media contact has a significant effect on the virus infection rate. The effectiveness of user self-prevention relies on the usefulness of the virus signatures. The reporting/alarm process can enhance the capability of anti-virus software company and the detected intensity of new threat. The quarantine policy can effectively reduce the spread of computer virus. Practical implications – Individuals should strengthen the self-awareness of information security to reduce the negative impact. Managers should construct and implement the information security norm to regulate the behavior of staff. Anti-virus software companies should strengthen the capability of their automatic reporting/alarm mechanism to early detect the exceptional conditions and control new threats in time. Originality/value – Information security management research is still in the growth phase, but it is critically important to establish the groundwork for understanding of computer viruses and the effectiveness of anti-virus policy from assorted perspectives. The major contribution of research is to explore the propagation of multipartite computer viruses and study how to prevent their destruction from the sociological and technical perspectives.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Jianguo Ren ◽  
Yonghong Xu ◽  
Jiming Liu

In a recent paper by J. Ren et al. (2012), a novel computer virus propagation model under the effect of the antivirus ability in a real network is established. The analysis there only partially uncovers the dynamics behaviors of virus spread over the network in the case where around bifurcation is local. In the present paper, by mathematical analysis, it is further shown that, under appropriate parameter values, the model may undergo a global B-T bifurcation, and the curves of saddle-node bifurcation, Hopf bifurcation, and homoclinic bifurcation are obtained to illustrate the qualitative behaviors of virus propagation. On this basis, a collection of policies is recommended to prohibit the virus prevalence. To our knowledge, this is the first time the global bifurcation has been explored for the computer virus propagation. Theoretical results and corresponding suggestions may help us suppress or eliminate virus propagation in the network.


Sign in / Sign up

Export Citation Format

Share Document