scholarly journals An Affinity Propagation Clustering Algorithm for Mixed Numeric and Categorical Datasets

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Kang Zhang ◽  
Xingsheng Gu

Clustering has been widely used in different fields of science, technology, social science, and so forth. In real world, numeric as well as categorical features are usually used to describe the data objects. Accordingly, many clustering methods can process datasets that are either numeric or categorical. Recently, algorithms that can handle the mixed data clustering problems have been developed. Affinity propagation (AP) algorithm is an exemplar-based clustering method which has demonstrated good performance on a wide variety of datasets. However, it has limitations on processing mixed datasets. In this paper, we propose a novel similarity measure for mixed type datasets and an adaptive AP clustering algorithm is proposed to cluster the mixed datasets. Several real world datasets are studied to evaluate the performance of the proposed algorithm. Comparisons with other clustering algorithms demonstrate that the proposed method works well not only on mixed datasets but also on pure numeric and categorical datasets.

Author(s):  
Jinchao Ji ◽  
Wei Pang ◽  
Yanlin Zheng ◽  
Zhe Wang ◽  
Zhiqiang Ma

Most of the initialization approaches are dedicated to the partitional clustering algorithms which process categorical or numerical data only. However, in real-world applications, data objects with both numeric and categorical features are ubiquitous. The coexistence of both categorical and numerical attributes make the initialization methods designed for single-type data inapplicable to mixed-type data. Furthermore, to the best of our knowledge, in the existing partitional clustering algorithms designed for mixed-type data, the initial cluster centers are determined randomly. In this paper, we propose a novel initialization method for mixed data clustering. In the proposed method, both the distance and density are exploited together to determine initial cluster centers. The performance of the proposed method is demonstrated by a series of experiments on three real-world datasets in comparison with that of traditional initialization methods.


2011 ◽  
Vol 48-49 ◽  
pp. 753-756
Author(s):  
Xin Quan Chen

Facing to the shortcoming of Affinity Propagation algorithm (AP), we present two expanded and improved AP algorithms. In the two algorithms, the AP algorithm based on Grid Cell (APGC) is an effective extension of AP algorithm on the level of grid cells, and the AP clustering algorithm based on Near neighbour Sampling (APNS) is trying to make some improving in time and space complexity. From some simulated comparison experiments of three algorithms, we know that APGC and APNS algorithms have evident improving than AP algorithm in time and space complexity. They can not only get a good clustering quality for massive data sets, but also filtrate noises and isolates well. So we can say they are two effective clustering algorithms with much applied prospect. At last, several research directions are presented.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 163
Author(s):  
Baobin Duan ◽  
Lixin Han ◽  
Zhinan Gou ◽  
Yi Yang ◽  
Shuangshuang Chen

With the universal existence of mixed data with numerical and categorical attributes in real world, a variety of clustering algorithms have been developed to discover the potential information hidden in mixed data. Most existing clustering algorithms often compute the distances or similarities between data objects based on original data, which may cause the instability of clustering results because of noise. In this paper, a clustering framework is proposed to explore the grouping structure of the mixed data. First, the transformed categorical attributes by one-hot encoding technique and normalized numerical attributes are input to a stacked denoising autoencoders to learn the internal feature representations. Secondly, based on these feature representations, all the distances between data objects in feature space can be calculated and the local density and relative distance of each data object can be also computed. Thirdly, the density peaks clustering algorithm is improved and employed to allocate all the data objects into different clusters. Finally, experiments conducted on some UCI datasets have demonstrated that our proposed algorithm for clustering mixed data outperforms three baseline algorithms in terms of the clustering accuracy and the rand index.


2009 ◽  
Vol 2009 ◽  
pp. 1-16 ◽  
Author(s):  
David J. Miller ◽  
Carl A. Nelson ◽  
Molly Boeka Cannon ◽  
Kenneth P. Cannon

Fuzzy clustering algorithms are helpful when there exists a dataset with subgroupings of points having indistinct boundaries and overlap between the clusters. Traditional methods have been extensively studied and used on real-world data, but require users to have some knowledge of the outcome a priori in order to determine how many clusters to look for. Additionally, iterative algorithms choose the optimal number of clusters based on one of several performance measures. In this study, the authors compare the performance of three algorithms (fuzzy c-means, Gustafson-Kessel, and an iterative version of Gustafson-Kessel) when clustering a traditional data set as well as real-world geophysics data that were collected from an archaeological site in Wyoming. Areas of interest in the were identified using a crisp cutoff value as well as a fuzzyα-cut to determine which provided better elimination of noise and non-relevant points. Results indicate that theα-cut method eliminates more noise than the crisp cutoff values and that the iterative version of the fuzzy clustering algorithm is able to select an optimum number of subclusters within a point set (in both the traditional and real-world data), leading to proper indication of regions of interest for further expert analysis


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 60
Author(s):  
Kun Gao ◽  
Hassan Ali Khan ◽  
Wenwen Qu

Density clustering has been widely used in many research disciplines to determine the structure of real-world datasets. Existing density clustering algorithms only work well on complete datasets. In real-world datasets, however, there may be missing feature values due to technical limitations. Many imputation methods used for density clustering cause the aggregation phenomenon. To solve this problem, a two-stage novel density peak clustering approach with missing features is proposed: First, the density peak clustering algorithm is used for the data with complete features, while the labeled core points that can represent the whole data distribution are used to train the classifier. Second, we calculate a symmetrical FWPD distance matrix for incomplete data points, then the incomplete data are imputed by the symmetrical FWPD distance matrix and classified by the classifier. The experimental results show that the proposed approach performs well on both synthetic datasets and real datasets.


2018 ◽  
Vol 12 (2) ◽  
pp. 116 ◽  
Author(s):  
Amjad Hudaib ◽  
Mohammad Khanafseh ◽  
Ola Surakhi

Clustering is the process of grouping a set of patterns into different disjoint clusters where each cluster contains the alike patterns. Many algorithms had been proposed before for clustering. K-medoid is a variant of k-mean that use an actual point in the cluster to represent it instead of the mean in the k-mean algorithm to get the outliers and reduce noise in the cluster. In order to enhance performance of k-medoid algorithm and get more accurate clusters, a hybrid algorithm is proposed which use CRO algorithm along with k-medoid. In this method, CRO is used to expand searching for the optimal medoid and enhance clustering by getting more precise results. The performance of the new algorithm is evaluated by comparing its results with five clustering algorithms, k-mean, k-medoid, DB/rand/1/bin, CRO based clustering algorithm and hybrid CRO-k-mean by using four real world datasets: Lung cancer, Iris, Breast cancer Wisconsin and Haberman’s survival from UCI machine learning data repository. The results were conducted and compared base on different metrics and show that proposed algorithm enhanced clustering technique by giving more accurate results.


2011 ◽  
pp. 24-32 ◽  
Author(s):  
Nicoleta Rogovschi ◽  
Mustapha Lebbah ◽  
Younès Bennani

Most traditional clustering algorithms are limited to handle data sets that contain either continuous or categorical variables. However data sets with mixed types of variables are commonly used in data mining field. In this paper we introduce a weighted self-organizing map for clustering, analysis and visualization mixed data (continuous/binary). The learning of weights and prototypes is done in a simultaneous manner assuring an optimized data clustering. More variables has a high weight, more the clustering algorithm will take into account the informations transmitted by these variables. The learning of these topological maps is combined with a weighting process of different variables by computing weights which influence the quality of clustering. We illustrate the power of this method with data sets taken from a public data set repository: a handwritten digit data set, Zoo data set and other three mixed data sets. The results show a good quality of the topological ordering and homogenous clustering.


2021 ◽  
Vol 10 (4) ◽  
pp. 2170-2180
Author(s):  
Untari N. Wisesty ◽  
Tati Rajab Mengko

This paper aims to conduct an analysis of the SARS-CoV-2 genome variation was carried out by comparing the results of genome clustering using several clustering algorithms and distribution of sequence in each cluster. The clustering algorithms used are K-means, Gaussian mixture models, agglomerative hierarchical clustering, mean-shift clustering, and DBSCAN. However, the clustering algorithm has a weakness in grouping data that has very high dimensions such as genome data, so that a dimensional reduction process is needed. In this research, dimensionality reduction was carried out using principal component analysis (PCA) and autoencoder method with three models that produce 2, 10, and 50 features. The main contributions achieved were the dimensional reduction and clustering scheme of SARS-CoV-2 sequence data and the performance analysis of each experiment on each scheme and hyper parameters for each method. Based on the results of experiments conducted, PCA and DBSCAN algorithm achieve the highest silhouette score of 0.8770 with three clusters when using two features. However, dimensionality reduction using autoencoder need more iterations to converge. On the testing process with Indonesian sequence data, more than half of them enter one cluster and the rest are distributed in the other two clusters.


2013 ◽  
Vol 12 (5) ◽  
pp. 3443-3451
Author(s):  
Rajesh Pasupuleti ◽  
Narsimha Gugulothu

Clustering analysis initiatives  a new direction in data mining that has major impact in various domains including machine learning, pattern recognition, image processing, information retrieval and bioinformatics. Current clustering techniques address some of the  requirements not adequately and failed in standardizing clustering algorithms to support for all real applications. Many clustering methods mostly depend on user specified parametric methods and initial seeds of clusters are randomly selected by  user.  In this paper, we proposed new clustering method based on linear approximation of function by getting over all idea of behavior knowledge of clustering function, then pick the initial seeds of clusters as the points on linear approximation line and perform clustering operations, unlike grouping data objects into clusters by using distance measures, similarity measures and statistical distributions in traditional clustering methods. We have shown experimental results as clusters based on linear approximation yields good  results in practice with an example of  business data are provided.  It also  explains privacy preserving clusters of sensitive data objects.


Sign in / Sign up

Export Citation Format

Share Document