On Expanded and Improved Affinity Propagation Clustering Algorithm

2011 ◽  
Vol 48-49 ◽  
pp. 753-756
Author(s):  
Xin Quan Chen

Facing to the shortcoming of Affinity Propagation algorithm (AP), we present two expanded and improved AP algorithms. In the two algorithms, the AP algorithm based on Grid Cell (APGC) is an effective extension of AP algorithm on the level of grid cells, and the AP clustering algorithm based on Near neighbour Sampling (APNS) is trying to make some improving in time and space complexity. From some simulated comparison experiments of three algorithms, we know that APGC and APNS algorithms have evident improving than AP algorithm in time and space complexity. They can not only get a good clustering quality for massive data sets, but also filtrate noises and isolates well. So we can say they are two effective clustering algorithms with much applied prospect. At last, several research directions are presented.

2008 ◽  
Vol 22 (16) ◽  
pp. 1547-1566 ◽  
Author(s):  
DARONG LAI ◽  
HONGTAO LU

Identifying communities in complex networks has recently attracted considerable attention in different fields. The goal of community identification is to cluster vertices of a network into groups, which is the same as clustering in machine learning and data mining domains. A recent proposed clustering method called affinity propagation shows high performance in clustering data sets into groups, and it does not require that the number of clusters be pre-specified. In this paper, based on a new method for calculating similarity between pairs of vertices and a transforming method for a given similarity from likelihood to log-domain, we apply that affinity propagation clustering method to identify communities in complex networks. Extensive simulation results demonstrate that affinity propagation clustering algorithm is very effective for identifying community structures in both computer-generated and real-world network data.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Kang Zhang ◽  
Xingsheng Gu

Clustering has been widely used in different fields of science, technology, social science, and so forth. In real world, numeric as well as categorical features are usually used to describe the data objects. Accordingly, many clustering methods can process datasets that are either numeric or categorical. Recently, algorithms that can handle the mixed data clustering problems have been developed. Affinity propagation (AP) algorithm is an exemplar-based clustering method which has demonstrated good performance on a wide variety of datasets. However, it has limitations on processing mixed datasets. In this paper, we propose a novel similarity measure for mixed type datasets and an adaptive AP clustering algorithm is proposed to cluster the mixed datasets. Several real world datasets are studied to evaluate the performance of the proposed algorithm. Comparisons with other clustering algorithms demonstrate that the proposed method works well not only on mixed datasets but also on pure numeric and categorical datasets.


Author(s):  
Yuancheng Li ◽  
Yaqi Cui ◽  
Xiaolong Zhang

Background: Advanced Metering Infrastructure (AMI) for the smart grid is growing rapidly which results in the exponential growth of data collected and transmitted in the device. By clustering this data, it can give the electricity company a better understanding of the personalized and differentiated needs of the user. Objective: The existing clustering algorithms for processing data generally have some problems, such as insufficient data utilization, high computational complexity and low accuracy of behavior recognition. Methods: In order to improve the clustering accuracy, this paper proposes a new clustering method based on the electrical behavior of the user. Starting with the analysis of user load characteristics, the user electricity data samples were constructed. The daily load characteristic curve was extracted through improved extreme learning machine clustering algorithm and effective index criteria. Moreover, clustering analysis was carried out for different users from industrial areas, commercial areas and residential areas. The improved extreme learning machine algorithm, also called Unsupervised Extreme Learning Machine (US-ELM), is an extension and improvement of the original Extreme Learning Machine (ELM), which realizes the unsupervised clustering task on the basis of the original ELM. Results: Four different data sets have been experimented and compared with other commonly used clustering algorithms by MATLAB programming. The experimental results show that the US-ELM algorithm has higher accuracy in processing power data. Conclusion: The unsupervised ELM algorithm can greatly reduce the time consumption and improve the effectiveness of clustering.


2011 ◽  
pp. 24-32 ◽  
Author(s):  
Nicoleta Rogovschi ◽  
Mustapha Lebbah ◽  
Younès Bennani

Most traditional clustering algorithms are limited to handle data sets that contain either continuous or categorical variables. However data sets with mixed types of variables are commonly used in data mining field. In this paper we introduce a weighted self-organizing map for clustering, analysis and visualization mixed data (continuous/binary). The learning of weights and prototypes is done in a simultaneous manner assuring an optimized data clustering. More variables has a high weight, more the clustering algorithm will take into account the informations transmitted by these variables. The learning of these topological maps is combined with a weighting process of different variables by computing weights which influence the quality of clustering. We illustrate the power of this method with data sets taken from a public data set repository: a handwritten digit data set, Zoo data set and other three mixed data sets. The results show a good quality of the topological ordering and homogenous clustering.


2021 ◽  
Vol 8 (10) ◽  
pp. 43-50
Author(s):  
Truong et al. ◽  

Clustering is a fundamental technique in data mining and machine learning. Recently, many researchers are interested in the problem of clustering categorical data and several new approaches have been proposed. One of the successful and pioneering clustering algorithms is the Minimum-Minimum Roughness algorithm (MMR) which is a top-down hierarchical clustering algorithm and can handle the uncertainty in clustering categorical data. However, MMR tends to choose the category with less value leaf node with more objects, leading to undesirable clustering results. To overcome such shortcomings, this paper proposes an improved version of the MMR algorithm for clustering categorical data, called IMMR (Improved Minimum-Minimum Roughness). Experimental results on actual data sets taken from UCI show that the IMMR algorithm outperforms MMR in clustering categorical data.


Author(s):  
Chunhua Ren ◽  
Linfu Sun

AbstractThe classic Fuzzy C-means (FCM) algorithm has limited clustering performance and is prone to misclassification of border points. This study offers a bi-directional FCM clustering ensemble approach that takes local information into account (LI_BIFCM) to overcome these challenges and increase clustering quality. First, various membership matrices are created after running FCM multiple times, based on the randomization of the initial cluster centers, and a vertical ensemble is performed using the maximum membership principle. Second, after each execution of FCM, multiple local membership matrices of the sample points are created using multiple K-nearest neighbors, and a horizontal ensemble is performed. Multiple horizontal ensembles can be created using multiple FCM clustering. Finally, the final clustering results are obtained by combining the vertical and horizontal clustering ensembles. Twelve data sets were chosen for testing from both synthetic and real data sources. The LI_BIFCM clustering performance outperformed four traditional clustering algorithms and three clustering ensemble algorithms in the experiments. Furthermore, the final clustering results has a weak correlation with the bi-directional cluster ensemble parameters, indicating that the suggested technique is robust.


2011 ◽  
Vol 268-270 ◽  
pp. 811-816
Author(s):  
Yong Zhou ◽  
Yan Xing

Affinity Propagation(AP)is a new clustering algorithm, which is based on the similarity matrix between pairs of data points and messages are exchanged between data points until clustering result emerges. It is efficient and fast , and it can solve the clustering on large data sets. But the traditional Affinity Propagation has many limitations, this paper introduces the Affinity Propagation, and analyzes in depth the advantages and limitations of it, focuses on the improvements of the algorithm — improve the similarity matrix, adjust the preference and the damping-factor, combine with other algorithms. Finally, discusses the development of Affinity Propagation.


Sign in / Sign up

Export Citation Format

Share Document