scholarly journals Traveling Waves for Delayed Cellular Neural Networks with Nonmonotonic Output Functions

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Zhi-Xian Yu ◽  
Rong Yuan ◽  
Cheng-Hsiung Hsu ◽  
Ming-Shu Peng

This work investigates traveling waves for a class of delayed cellular neural networks with nonmonotonic output functions on the one-dimensional integer latticeZ. The dynamics of each given cell depends on itself and its nearestmleft orlright neighborhood cells with distributed delay due to, for example, finite switching speed and finite velocity of signal transmission. Our technique is to construct two appropriate nondecreasing functions to squeeze the nonmonotonic output functions. Then we construct a suitable wave profiles set and derive the existence of traveling wave solutions by using Schauder's fixed point theorem.

2008 ◽  
Vol 18 (12) ◽  
pp. 3515-3550 ◽  
Author(s):  
CHENG-HSIUNG HSU ◽  
CHUN-HSIEN LI ◽  
SUH-YUH YANG

This work investigates the diversity of traveling wave solutions for a class of delayed cellular neural networks on the one-dimensional integer lattice ℤ1. The dynamics of a given cell is characterized by instantaneous self-feedback and neighborhood interaction with distributed delay due to, for example, finite switching speed and finite velocity of signal transmission. Applying the monotone iteration scheme, we can deduce the existence of monotonic traveling wave solutions provided the templates satisfy the so-called quasi-monotonicity condition. We then consider two special cases of the delayed cellular neural network in which each cell interacts only with either the nearest m left neighbors or the nearest m right neighbors. For the former case, we can directly figure out the analytic solution in an explicit form by the method of step with the help of the characteristic function and then prove that, in addition to the existence of monotonic traveling wave solutions, for certain templates there exist nonmonotonic traveling wave solutions such as camel-like waves with many critical points. For the latter case, employing the comparison arguments repeatedly, we can clarify the deformation of traveling wave solutions with respect to the wave speed. More specifically, we can describe the transition of profiles from monotonicity, damped oscillation, periodicity, unboundedness and back to monotonicity as the wave speed is varied. Some numerical results are also given to demonstrate the theoretical analysis.


2001 ◽  
Vol 11 (08) ◽  
pp. 2085-2095 ◽  
Author(s):  
JUNG-CHAO BAN ◽  
KAI-PING CHIEN ◽  
SONG-SUN LIN ◽  
CHENG-HSIUNG HSU

This investigation will describe the spatial disorder of one-dimensional Cellular Neural Networks (CNN). The steady state solutions of the one-dimensional CNN can be replaced as an iteration map which is one dimensional under certain parameters. Then, the maps are chaotic and the spatial entropy of the steady state solutions is a three-dimensional devil-staircase like function.


2007 ◽  
Vol 17 (06) ◽  
pp. 1969-1983 ◽  
Author(s):  
YA-WEN CHANG ◽  
JONQ JUANG ◽  
CHIN-LUNG LI

In 1998, Chen et al. [1998] found an error in Marotto's paper [1978]. It was pointed out by them that the existence of an expanding fixed point z of a map F in Br( z ), the ball of radius r with center at z does not necessarily imply that F is expanding in Br( z ). Subsequent efforts (see e.g. [Chen et al., 1998; Lin et al., 2002; Li & Chen, 2003]) in fixing the problems have some discrepancies since they only give conditions for which F is expanding "locally". In this paper, we give sufficient conditions so that F is "globally" expanding. This, in turn, gives more satisfying definitions of a snap-back repeller. We then use those results to show the existence of chaotic backward traveling waves in a discrete time analogy of one-dimensional Cellular Neural Networks (CNNs). Some computer evidence of chaotic traveling waves is also given.


2001 ◽  
Vol 11 (06) ◽  
pp. 1645-1653 ◽  
Author(s):  
JUNG-CHAO BAN ◽  
SONG-SUN LIN ◽  
CHIH-WEN SHIH

This work investigates mosaic patterns for the one-dimensional cellular neural networks with various boundary conditions. These patterns can be formed by combining the basic patterns. The parameter space is partitioned so that the existence of basic patterns can be determined for each parameter region. The mosaic patterns can then be completely characterized through formulating suitable transition matrices and boundary-pattern matrices. These matrices generate the patterns for the interior cells from the basic patterns and indicate the feasible patterns for the boundary cells. As an illustration, we elaborate on the cellular neural networks with a general 1 × 3 template. The exact number of mosaic patterns will be computed for the system with the Dirichlet, Neumann and periodic boundary conditions respectively. The idea in this study can be extended to other one-dimensional lattice systems with finite-range interaction.


1999 ◽  
Vol 09 (07) ◽  
pp. 1307-1319 ◽  
Author(s):  
CHENG-HSIUNG HSU ◽  
SONG-SUN LIN ◽  
WENXIAN SHEN

In this paper, we study the structure of traveling wave solutions of Cellular Neural Networks of the advanced type. We show the existence of monotone traveling wave, oscillating wave and eventually periodic wave solutions by using shooting method and comparison principle. In addition, we obtain the existence of periodic wave train solutions.


2003 ◽  
Vol 13 (04) ◽  
pp. 797-813 ◽  
Author(s):  
PEIXUAN WENG ◽  
JIANHONG WU

In this paper, we establish the existence and describe the global structure of traveling waves for a class of lattice delay differential equations describing cellular neural networks with distributed delayed signal transmission. We describe the transition of wave profiles from monotonicity, damped oscillation, periodicity, unboundedness and back to monotonicity as the wave speed is varied. We also describe an interval of the wave speed where the structure of the wave solution is unknown since the corresponding profile equation involves distributed argument of both advanced and retarded types, and we present some preliminary numerical simulation to illustrate the complexity.


2019 ◽  
Vol 84 (4) ◽  
pp. 797-812 ◽  
Author(s):  
E El Behi-Gornostaeva ◽  
K Mitra ◽  
B Schweizer

Abstract We investigate the one-dimensional non-equilibrium Richards equation with play-type hysteresis. It is known that regularized versions of this equation permit traveling wave solutions that show oscillations and, in particular, the physically relevant effect of a saturation overshoot. We investigate here the non-regularized hysteresis operator and combine it with a positive $\tau $-term. Our result is that the model has monotone traveling wave solutions. These traveling waves describe the behavior of fronts in a bounded domain. In a two-dimensional interpretation, the result characterizes the speed of fingers in non-homogeneous solutions.


2013 ◽  
Author(s):  
V. M. Vassilev ◽  
P. A. Djondjorov ◽  
M. Ts. Hadzhilazova ◽  
I. M. Mladenov

2007 ◽  
Vol 17 (03) ◽  
pp. 953-963 ◽  
Author(s):  
XIAO-SONG YANG ◽  
YAN HUANG

In this paper we demonstrate chaos, two-tori and limit cycles in a new family of Cellular Neural Networks which is a one-dimensional regular array of four cells. The Lyapunov spectrum is calculated in a range of parameters, the bifurcation plots are presented as well. Furthermore, we confirm the nature of limit cycle, chaos and two-tori by studying Poincaré maps.


Sign in / Sign up

Export Citation Format

Share Document