scholarly journals Improving the Bin Packing Heuristic through Grammatical Evolution Based on Swarm Intelligence

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Marco Aurelio Sotelo-Figueroa ◽  
Héctor José Puga Soberanes ◽  
Juan Martín Carpio ◽  
Héctor J. Fraire Huacuja ◽  
Laura Cruz Reyes ◽  
...  

In recent years Grammatical Evolution (GE) has been used as a representation of Genetic Programming (GP) which has been applied to many optimization problems such as symbolic regression, classification, Boolean functions, constructed problems, and algorithmic problems. GE can use a diversity of searching strategies including Swarm Intelligence (SI). Particle Swarm Optimisation (PSO) is an algorithm of SI that has two main problems: premature convergence and poor diversity. Particle Evolutionary Swarm Optimization (PESO) is a recent and novel algorithm which is also part of SI. PESO uses two perturbations to avoid PSO’s problems. In this paper we propose using PESO and PSO in the frame of GE as strategies to generate heuristics that solve the Bin Packing Problem (BPP); it is possible however to apply this methodology to other kinds of problems using another Grammar designed for that problem. A comparison between PESO, PSO, and BPP’s heuristics is performed through the nonparametric Friedman test. The main contribution of this paper is proposing a Grammar to generate online and offline heuristics depending on the test instance trying to improve the heuristics generated by other grammars and humans; it also proposes a way to implement different algorithms as search strategies in GE like PESO to obtain better results than those obtained by PSO.

2019 ◽  
Vol 10 (4) ◽  
pp. 38-52 ◽  
Author(s):  
Amira Gherboudj

African Buffalo Optimization (ABO) is one of the most recent bioinspired metaheuristics based on swarm intelligence. It is inspired by the buffalo's behavior and lifestyle. ABO Metaheuristic showed its effectiveness for solving several optimization problems. In this contribution, we present an adaptive ABO for solving the NP-hard one dimensional Bin Packing Problem (1BPP). In the proposed algorithm, we used the ABO algorithm in combination with Ranked Order Value method to obtain discrete values and Bin Packing Problem heuristics to incorporate the problem knowledge. The proposed algorithm is used to solve 1210 of 1BPP instances. The obtained results are compared with those found by recent algorithms in the literature. Computational results show the effectiveness of the proposed algorithm and its ability to achieve best and promising solutions.


Author(s):  
Megha Vora ◽  
T. T. Mirnalinee

In the past two decades, Swarm Intelligence (SI)-based optimization techniques have drawn the attention of many researchers for finding an efficient solution to optimization problems. Swarm intelligence techniques are characterized by their decentralized way of working that mimics the behavior of colony of ants, swarm of bees, flock of birds, or school of fishes. Algorithmic simplicity and effectiveness of swarm intelligence techniques have made it a powerful tool for solving global optimization problems. Simulation studies of the graceful, but unpredictable, choreography of bird flocks led to the design of the particle swarm optimization algorithm. Studies of the foraging behavior of ants resulted in the development of ant colony optimization algorithm. This chapter provides insight into swarm intelligence techniques, specifically particle swarm optimization and its variants. The objective of this chapter is twofold: First, it describes how swarm intelligence techniques are employed to solve various optimization problems. Second, it describes how swarm intelligence techniques are efficiently applied for clustering, by imposing clustering as an optimization problem.


2016 ◽  
pp. 1519-1544 ◽  
Author(s):  
Megha Vora ◽  
T. T. Mirnalinee

In the past two decades, Swarm Intelligence (SI)-based optimization techniques have drawn the attention of many researchers for finding an efficient solution to optimization problems. Swarm intelligence techniques are characterized by their decentralized way of working that mimics the behavior of colony of ants, swarm of bees, flock of birds, or school of fishes. Algorithmic simplicity and effectiveness of swarm intelligence techniques have made it a powerful tool for solving global optimization problems. Simulation studies of the graceful, but unpredictable, choreography of bird flocks led to the design of the particle swarm optimization algorithm. Studies of the foraging behavior of ants resulted in the development of ant colony optimization algorithm. This chapter provides insight into swarm intelligence techniques, specifically particle swarm optimization and its variants. The objective of this chapter is twofold: First, it describes how swarm intelligence techniques are employed to solve various optimization problems. Second, it describes how swarm intelligence techniques are efficiently applied for clustering, by imposing clustering as an optimization problem.


2019 ◽  
Vol 8 (3) ◽  
pp. 8259-8265

Particle swarm optimization (PSO) is one of the most capable algorithms that reside to the swarm intelligence (SI) systems. Recently, it becomes very popular and renowned because of the easy implementation in complex/real life optimization problems. However, PSO has some observable drawbacks such as diversity maintenance, pre convergence and/or slow convergence speed. The ultimate success of PSO depends on the velocity update of the particles. Velocity has a significant dependence on its multiplied coefficient like inertia weight and acceleration factors. To increase the ability of PSO, this paper introduced an enriched PSO (namely ePSO), to solve hard optimization problems more precisely, efficiently and reliably. In ePSO novel gradually decreased inertia weight (as an alternative of a fixed constant value) and new gradually decreased and/or increased acceleration factors (meant for cognitive and social modules) is introduced. Proposed ePSO is used to solve four well known typical unconstrained benchmark functions and four complex unconstrained real life problems. The overall observation shows that proposed new algorithm ePSO is fitter than the compared algorithms significantly and statistically. Moreover, the convergence accuracy and speed of ePSO are also improved effectively


2020 ◽  
Vol 2020 ◽  
pp. 1-20 ◽  
Author(s):  
Aram M. Ahmed ◽  
Tarik A. Rashid ◽  
Soran Ab. M. Saeed

This paper presents an in-depth survey and performance evaluation of cat swarm optimization (CSO) algorithm. CSO is a robust and powerful metaheuristic swarm-based optimization approach that has received very positive feedback since its emergence. It has been tackling many optimization problems, and many variants of it have been introduced. However, the literature lacks a detailed survey or a performance evaluation in this regard. Therefore, this paper is an attempt to review all these works, including its developments and applications, and group them accordingly. In addition, CSO is tested on 23 classical benchmark functions and 10 modern benchmark functions (CEC 2019). The results are then compared against three novel and powerful optimization algorithms, namely, dragonfly algorithm (DA), butterfly optimization algorithm (BOA), and fitness dependent optimizer (FDO). These algorithms are then ranked according to Friedman test, and the results show that CSO ranks first on the whole. Finally, statistical approaches are employed to further confirm the outperformance of CSO algorithm.


2014 ◽  
Vol 962-965 ◽  
pp. 2868-2871 ◽  
Author(s):  
Alexander V. Chekanin ◽  
Vladislav A. Chekanin

The actual in industry multidimensional orthogonal packing problem is considered in the article. Solution of a large number of different practical optimization problems, including resources saving problem, optimization problems in logistics, scheduling and planning comes down to the orthogonal packing problem which is NP-hard in strong sense. One of the indicators characterizing the efficiency of packing constructing algorithm is the efficiency of the used data structure. In the article a multilevel linked data structure that increases the speed of constructing of a packing is proposed. The carried out computational experiments show the high efficiency of the new data structure. Multilevel linked data structure is applicable for multidimensional orthogonal bin packing problems any kind.


Author(s):  
Janusz Sobecki

In this paper a comparison of a few swarm intelligence algorithms applied in recommendation of student courses is presented. Swarm intelligence algorithms are nowadays successfully used in many areas, especially in optimization problems. To apply each swarm intelligence algorithm in recommender systems a special representation of the problem space is necessary. Here we present the comparison of efficiency of grade prediction of several evolutionary algorithms, such as: Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Intelligent Weed Optimization (IWO), Bee Colony Optimization (BCO) and Bat Algorithm (BA).


Author(s):  
Marco Aurelio Sotelo-Figueroa ◽  
Héctor José Puga Soberanes ◽  
Juan Martín Carpio ◽  
Héctor J. Fraire Huacuja ◽  
Laura Cruz Reyes ◽  
...  

2013 ◽  
Vol 10 (9) ◽  
pp. 2010-2020
Author(s):  
Ibrahim M. Hezam ◽  
Osama Abdel Raouf ◽  
Mohey M. Hadhoud

This paper proposes a new hybrid swarm intelligence algorithm that encompasses the feature of three major swarm algorithms. It combines the fast convergence of the Cuckoo Search (CS), the dynamic root change of the Firefly Algorithm (FA), and the continuous position update of the Particle Swarm Optimization (PSO). The Compound Swarm Intelligence Algorithm (CSIA) will be used to solve a set of standard benchmark functions. The research study compares the performance of CSIA with that of CS, FA, and PSO, using the same set of benchmark functions. The comparison aims to test if the performance of CSIA is Competitive to that of the CS, FA, and PSO algorithms denoting the solution results of the benchmark functions.


2021 ◽  
Vol 30 (1) ◽  
pp. 636-663
Author(s):  
Chanaleä Munien ◽  
Absalom E. Ezugwu

Abstract The bin-packing problem (BPP) is an age-old NP-hard combinatorial optimization problem, which is defined as the placement of a set of different-sized items into identical bins such that the number of containers used is optimally minimized. Besides, different variations of the problem do exist in practice depending on the bins dimension, placement constraints, and priority. More so, there are several important real-world applications of the BPP, especially in cutting industries, transportation, warehousing, and supply chain management. Due to the practical relevance of this problem, researchers are consistently investigating new and improved techniques to solve the problem optimally. Nature-inspired metaheuristics are powerful algorithms that have proven their incredible capability of solving challenging and complex optimization problems, including several variants of BPPs. However, no comprehensive literature review exists on the applications of the metaheuristic approaches to solve the BPPs. Therefore, to fill this gap, this article presents a survey of the recent advances achieved for the one-dimensional BPP, with specific emphasis on population-based metaheuristic algorithms. We believe that this article can serve as a reference guide for researchers to explore and develop more robust state-of-the-art metaheuristics algorithms for solving the emerging variants of the bin-parking problems.


Sign in / Sign up

Export Citation Format

Share Document