scholarly journals Stability and Hopf Bifurcation in a Delayed Predator-Prey System with Herd Behavior

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Chaoqun Xu ◽  
Sanling Yuan

A special predator-prey system is investigated in which the prey population exhibits herd behavior in order to provide a self-defense against predators, while the predator is intermediate and its population shows individualistic behavior. Considering the fact that there always exists a time delay in the conversion of the biomass of prey to that of predator in this system, we obtain a delayed predator-prey model with square root functional response and quadratic mortality. For this model, we mainly investigate the stability of positive equilibrium and the existence of Hopf bifurcation by choosing the time delay as a bifurcation parameter.

2018 ◽  
Vol 28 (08) ◽  
pp. 1850099 ◽  
Author(s):  
Ruizhi Yang ◽  
Chunrui Zhang ◽  
Yazhuo Zhang

The predator–prey model is fundamentally important to study the growth law of the population in nature. In this paper, we propose a diffusive predator–prey model, in which we also consider time delay in the gestation time of predator and Michaelis–Menten type predator harvesting. By analyzing the distribution of eigenvalues, we investigate the stability of the coexisting equilibrium and the existence of Hopf bifurcation using time delay as bifurcation parameter. We analyze the property of Hopf bifurcation, and give an explicit formula for determining the direction and the stability of Hopf bifurcation. Finally, some numerical simulations are given to support our results.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Heping Jiang ◽  
Huiping Fang ◽  
Yongfeng Wu

Abstract This paper mainly aims to consider the dynamical behaviors of a diffusive delayed predator–prey system with Smith growth and herd behavior subject to the homogeneous Neumann boundary condition. For the analysis of the predator–prey model, we have studied the existence of Hopf bifurcation by analyzing the distribution of the roots of associated characteristic equation. Then we have proved the stability of the periodic solution by calculating the normal form on the center of manifold which is associated to the Hopf bifurcation points. Some numerical simulations are also carried out in order to validate our analysis findings. The implications of our analytical and numerical findings are discussed critically.


2019 ◽  
Vol 29 (04) ◽  
pp. 1950055
Author(s):  
Fengrong Zhang ◽  
Yan Li ◽  
Changpin Li

In this paper, we consider a delayed diffusive predator–prey model with Leslie–Gower term and herd behavior subject to Neumann boundary conditions. We are mainly concerned with the impact of time delay on the stability of this model. First, for delayed differential equations and delayed-diffusive differential equations, the stability of the positive equilibrium and the existence of Hopf bifurcation are investigated respectively. It is observed that when time delay continues to increase and crosses through some critical values, a family of homogeneous and inhomogeneous periodic solutions emerge. Then, the explicit formula for determining the stability and direction of bifurcating periodic solutions are also derived by employing the normal form theory and center manifold theorem for partial functional differential equations. Finally, some numerical simulations are shown to support the analytical results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ruizhi Yang ◽  
Yuxin Ma ◽  
Chiyu Zhang

AbstractIn this paper, we consider a diffusive predator–prey model with a time delay and prey toxicity. The effect of time delay on the stability of the positive equilibrium is studied by analyzing the eigenvalue spectrum. Delay-induced Hopf bifurcation is also investigated. By utilizing the normal form method and center manifold reduction for partial functional differential equations, the formulas for determining the property of Hopf bifurcation are given.


2009 ◽  
Vol 64 (7-8) ◽  
pp. 405-410
Author(s):  
Mohammed Ismail ◽  
Atta A. K. Abu Hany ◽  
Aysha Agha

AbstractWe establish a mathematical model for the three-patch diffusion predator-prey system with time delays. The theory of Hopf bifurcation is implemented, choosing the time delay parameter as a bifurcation parameter. We present the condition for the existence of a periodic orbit of the Hopf-type from the positive equilibrium.


2022 ◽  
Vol 355 ◽  
pp. 03048
Author(s):  
Bochen Han ◽  
Shengming Yang ◽  
Guangping Zeng

In this paper, we consider a predator-prey system with two time delays, which describes a prey–predator model with parental care for predators. The local stability of the positive equilibrium is analysed. By choosing the two time delays as the bifurcation parameter, the existence of Hopf bifurcation is studied. Numerical simulations show the positive equilibrium loses its stability via the Hopf bifurcation when the time delay increases beyond a threshold.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Lv-Zhou Zheng

A class of predator-prey system with distributed delays and competition term is considered. By considering the time delay as bifurcation parameter, we analyze the stability and the Hopf bifurcation of the predator-prey system. According to the theorem of Hopf bifurcation, some sufficient conditions are obtained for the local stability of the positive equilibrium point.


2012 ◽  
Vol 472-475 ◽  
pp. 2940-2943
Author(s):  
Zhi Chao Jiang ◽  
Hui Chen

A stage-structured predator-prey system with time delay is considered. By analyzing the characteristic equations, the local stability of a positive equilibrium and a boundary equilibrium is discussed, respectively. Furthermore, it is proved that the system undergoes a Hopf bifurcation at the positive equilibrium when . The estimation of the length of delay to preserve stability has also been calculated.


2014 ◽  
Vol 513-517 ◽  
pp. 3723-3727
Author(s):  
Hong Yan Wang ◽  
Hong Mei Wang

Hopf bifurcation occurs in most of dynamics systems when the influence from the past state varies. In modeling population dynamics, it is more reasonable taking into account the time delays. In this paper, a stage-structured predator-prey system with delay is considered. The existence of Hopf bifurcations at the positive equilibrium is established by analyzing the distribution of the characteristic values. An explicit algorithm for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by using the normal form and the center manifold theory. Numerical simulations to support the analytical conclusions are carried out.


2019 ◽  
Vol 17 (1) ◽  
pp. 141-159 ◽  
Author(s):  
Zaowang Xiao ◽  
Zhong Li ◽  
Zhenliang Zhu ◽  
Fengde Chen

Abstract In this paper, we consider a Beddington-DeAngelis predator-prey system with stage structure for predator and time delay incorporating prey refuge. By analyzing the characteristic equations, we study the local stability of the equilibrium of the system. Using the delay as a bifurcation parameter, the model undergoes a Hopf bifurcation at the coexistence equilibrium when the delay crosses some critical values. After that, by constructing a suitable Lyapunov functional, sufficient conditions are derived for the global stability of the system. Finally, the influence of prey refuge on densities of prey species and predator species is discussed.


Sign in / Sign up

Export Citation Format

Share Document