scholarly journals Experimental Investigation on Characteristics of Flow Instabilities in Centrifugal Pump Impeller under Part-Load Conditions

2015 ◽  
Vol 6 (0) ◽  
pp. 604812-604812
Author(s):  
D. Wu ◽  
Y. Ren ◽  
H. Liu ◽  
J. Mu ◽  
L. Jiang
Author(s):  
Ran Tao ◽  
Zhengwei Wang

Undesirable flow regime occurs at partial-load conditions of the centrifugal pump. Flow separates at the leading edge and pulses in the blade channel with complex stall cell transfer law. The passing capability of the blade channel becomes important when rotating stall happens. In this study, the blade channel number influence on the flow stability in a centrifugal pump impeller was studied by unsteady flow simulations after numerical-experimental verification. The 5-, 6-, and 7-blade impellers were discussed under the same partial-load flow rate condition and the same rotating speed. Results show that the internal flow pattern was strongly influenced by the blade channel number. Periodic half-blockage was observed in the 5-blade impeller. Alternating stall with three stalled and three well-behaved channels existed in the 6-blade impeller. Complex aperiodic flow pattern occurred in the 7-blade impeller with the well-behaved, half-blocked, and fully stalled passages were all observed with stall cell transfer. The different flow regime caused different pressure pulsations. In the 5-blade impeller, the inter-channel flow frequencies, which were induced by the fluid extruded from blocked channels flowed into other channels, dominated. In the 6-blade impeller, the pressure pulsations performed low-in-amplitude and high-in-frequency. The flow regime was stable even under the rotating stall. In the 7-blade impeller, the rotating stall frequency dominated. The inter-channel flow frequencies were also obvious. The stable rotating stall pattern does not strongly influence the pressure pulsation and impeller axial and radial forces. The transferring stall cell induces extra mild pressure pulsation and impeller forces. The inter-channel flow adds strong pressure pulsation and impeller forces. When centrifugal pumps are operating at partial-load conditions, the flow characters especially the inter-channel flow caused by half-channel-blockage should be checked to avoid operation instability and security.


2019 ◽  
Vol 105 ◽  
pp. 11-26 ◽  
Author(s):  
Rodolfo Marcilli Perissinotto ◽  
William Monte Verde ◽  
Marcelo Souza de Castro ◽  
Jorge Luiz Biazussi ◽  
Valdir Estevam ◽  
...  

1999 ◽  
Vol 121 (3) ◽  
pp. 621-626 ◽  
Author(s):  
Kevin A. Kaupert ◽  
Thomas Staubli

An experimental investigation is presented regarding the unsteady pressure field within a high specific speed centrifugal pump impeller (ωs = 1.7) which operated in a double spiral volute. For this, twenty-five piezoresistive pressure transducers were mounted within a single blade passage and sampled in the rotating impeller frame with a telemetry system. The influence of varying volume flux on the pressure transducers was evaluated in terms of pressure fluctuation magnitudes and phase differences. The magnitude information reveals that the pressure fluctuations from the impeller-volute interaction grew as the volume flux became further removed from the best efficiency point and as the trailing edge of the impeller blade was approached. These fluctuations reached 35% of the pump head in deep part load. The upstream influence of the volute steady pressure field dominates the unsteady pressure field within the impeller at all off design load points. Acquired signal phase information permits the identification of the pressure field unsteadiness within the impeller passage as fundamentally synchronized simultaneously with the volute tongue passing frequency. Special emphasis was placed on the volume flux regime where the pump and impeller pressure discharge characteristic undergo hysteresis, as impeller inlet and outlet recirculation commence and cease. A synthesis of the rotating transducers was performed to obtain unsteady blade loading parameters. The value of the unsteady lift coefficient varies on the order of 200% for a single blade in part load operation (at 45% bep), an abrupt fluctuation occurring as the fore running blade suction side passes a volute tongue. The unsteady moment coefficient and center of pressure are also shown to vary significantly during the impeller-volute tongue interaction.


2016 ◽  
Vol 10 (4) ◽  
pp. 215 ◽  
Author(s):  
Ioannis Kassanos ◽  
Marios Chrysovergis ◽  
John Anagnostopoulos ◽  
George Charalampopoulos ◽  
Stamelos Rokas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document