scholarly journals Adaptive Robust Sliding Mode Vibration Control of a Flexible Beam Using Piezoceramic Sensor and Actuator: An Experimental Study

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ruo Lin Wang ◽  
H. Gu ◽  
G. Song

This paper presents an experimental study of an adaptive robust sliding mode control scheme based on the Lyapunov’s direct method for active vibration control of a flexible beam using PZT (lead zirconate titanate) sensor and actuator. PZT, a type of piezoceramic material, has the advantages of high reliability, high bandwidth, and solid state actuation and is adopted here in forms of surface-bond patches for vibration control. Two adaptive robust sliding mode controllers for vibration suppression are designed: one uses a discontinuous bang-bang robust compensator and the other uses a smooth compensator with a hyperbolic tangent function. Both controllers guarantee asymptotic stability, as proved by the Lyapunov’s direct method. Experimental results verified the effectiveness and the robustness of both adaptive sliding mode controllers. However, from the experimental results, the bang-bang robust compensator causes small-magnitude chattering because of the discontinuous switching actions. With the smooth compensator, vibration is quickly suppressed and no chattering is induced. Furthermore, the robustness of the controllers is successfully demonstrated with ensured effectiveness in vibration control when masses are added to the flexible beam.

2003 ◽  
pp. 193-205 ◽  
Author(s):  
Mariagrazia Dotoli ◽  
Paolo Lino ◽  
Bruno Maione ◽  
David Naso ◽  
Biagio Turchiano

1999 ◽  
Vol 121 (1) ◽  
pp. 134-138 ◽  
Author(s):  
Seung-Bok Choi

This technical brief addresses the vibration control of a flexible beam structure using ER (electro-rheological) dampers. A clamped-clamped flexible beam system supported by two short columns is considered. An ER damper which is operated in shear mode is designed on the basis of Bingham model of the ER fluid, and attached to the flexible beam. After deriving the governing equation of motion and associated boundary conditions, a sliding mode controller is formulated to effectively suppress the vibration of the beam caused by external forces. In the formulation of the controller, parameter variations such as frequency deviation are treated to take into account the robustness of control system. The effectiveness of the proposed control system is confirmed by both simulation and experimental results.


2016 ◽  
Vol 40 (2) ◽  
pp. 514-527 ◽  
Author(s):  
Yang Liu

This paper studies sliding-mode control of a class of multibody underactuated systems with discontinuous friction on the unactuated configuration variable taking into account parametric uncertainties. Global motion for this class system including sticking, stick-slip, and slip regimes are analysed, and their corresponding equilibria are identified. The control objective is to avoid the sticking and the stick-slip regimes while tracking a desired velocity in the slip regime. Three sliding-mode controllers which are robust to parametric uncertainties are proposed, and their stabilities are proved using the Lyapunov direct method. Two examples, a mass-spring-damping system and a drill-string system, are used to demonstrate the validity of the proposed controllers.


Sign in / Sign up

Export Citation Format

Share Document