Control of a class of multibody underactuated mechanical systems with discontinuous friction using sliding-mode

2016 ◽  
Vol 40 (2) ◽  
pp. 514-527 ◽  
Author(s):  
Yang Liu

This paper studies sliding-mode control of a class of multibody underactuated systems with discontinuous friction on the unactuated configuration variable taking into account parametric uncertainties. Global motion for this class system including sticking, stick-slip, and slip regimes are analysed, and their corresponding equilibria are identified. The control objective is to avoid the sticking and the stick-slip regimes while tracking a desired velocity in the slip regime. Three sliding-mode controllers which are robust to parametric uncertainties are proposed, and their stabilities are proved using the Lyapunov direct method. Two examples, a mass-spring-damping system and a drill-string system, are used to demonstrate the validity of the proposed controllers.

2014 ◽  
Vol 891-892 ◽  
pp. 878-883 ◽  
Author(s):  
Iuliia Karachevtseva ◽  
Arcady V. Dyskin ◽  
Elena Pasternak

We investigate the influence of oscillating normal force on the frictional sliding. Frictional sliding in the case of a simple mass-spring model of Burridge and Knopoff type demonstrates stick-slip even when the friction coefficient is constant. Oscillations of the normal force in this case do not produce noticeable changes in the stick-slip sliding mode. A completely different picture is observed when the oscillations of normal force are applied to the system, which is in the state of steady sliding. In this case the normal oscillations turn the steady sliding into stick slip. A special case is observed when the normal force oscillates with the eigen frequency of the stick-slip motion. Then, no matter how small the amplitude of oscillations is the system reaches the same final stick-slip regime. The time required to reach this limiting regime is inversely proportional to the amplitude of oscillations of the normal force.


Author(s):  
Jialin Tian ◽  
Jie Wang ◽  
Siqi Zhou ◽  
Yinglin Yang ◽  
Liming Dai

Excessive stick–slip vibration of drill strings can cause inefficiency and unsafety of drilling operations. To suppress the stick–slip vibration that occurred during the downhole drilling process, a drill string torsional vibration system considering the torsional vibration tool has been proposed on the basis of the 4-degree of freedom lumped-parameter model. In the design of the model, the tool is approximated by a simple torsional pendulum that brings impact torque to the drill bit. Furthermore, two sliding mode controllers, U1 and U2, are used to suppress stick–slip vibrations while enabling the drill bit to track the desired angular velocity. Aiming at parameter uncertainty and system instability in the drilling operations, a parameter adaptation law is added to the sliding mode controller U2. Finally, the suppression effects of stick–slip and robustness of parametric uncertainty about the two proposed controllers are demonstrated and compared by simulation and field test results. This paper provides a reference for the suppression of stick–slip vibration and the further study of the complex dynamics of the drill string.


Author(s):  
Abdelbasset Krama ◽  
Mohamed Gharib ◽  
Shady S. Refaat ◽  
Alan Palazzolo

Abstract This paper presents a novel controller for drill string systems based on a super-twisting sliding mode theory. The aim is to eliminate the stick-slip vibration and maintain a constant drill string velocity at the desired reference value. The proposed controller inherently attenuates the torsional vibration while ensuring the stability and high efficiency of the drill string. A discontinuous lumped-parameter torsional model of vertical drill strings based on four components (rotary table, drill pipes, drill collars and drill bit) is considered. The Karnopp friction model is adopted to simulate the nonlinear bit-rock interaction phenomena. In order to provide a more accurate evaluation, the proposed drill string controller is implemented with the induction motor, a variable frequency drive and a gearbox to closely mirror the real environment of oil well drill strings. The increasing demand for prototyping and testing high-power plants in realistic and safe environments has led to the advancement of new types of experimental investigations without hurting the real system or building a small-scale prototype for testing. The dynamic performance of the proposed controller has been investigated with MATLAB software as well as in a novel hardware in-the-loop (HIL) testing platform. A power plant is modeled and implemented in the real-time simulator OPAL-RT 5600, whereas the controllers are implemented in the dSPACE 1103 control board. The results obtained through simulation and HIL testing demonstrate the feasibility and high performance of the proposed controller.


2020 ◽  
pp. 107754632096099
Author(s):  
Roya Sadeghimehr ◽  
Amirhossein Nikoofard ◽  
Ali Khaki Sedigh

Dealing with torsional vibrations and stick–slip oscillations of a drill string system is a challenging engineering task in the oil drilling process because of the harmful and costly consequences of such vibrations. In this article, the drill string system is modeled using a lumped-parameter model with four degrees of freedom, and the bit–rock contact is represented by a nonlinear function of a bit velocity. Also, tracking the desired velocity of a drill string system with known constant input delay is addressed in the presence of external disturbance and parameter uncertainties by applying the Smith predictor–based sliding mode control method. The performance of the smith predictor–based sliding mode control with input delay and disturbance in tracking the desired velocity and controlling the stick–slip oscillations is compared with the sliding mode control with/without input delay. The system output’s sensitivity to the delay parameter is also investigated, indicating how the bit velocity changes concerning the delay parameter. The proper choice of adaptation gain is determinative in the performance of the controller, and its impact is investigated. Moreover, the robustness of the smith predictor–based sliding mode control is shown by changing the weight on the bit parameter. Simulation results demonstrate the effectiveness of the proposed method.


2018 ◽  
Vol 29 (5) ◽  
pp. 805-825 ◽  
Author(s):  
VAHID VAZIRI ◽  
MARCIN KAPITANIAK ◽  
MARIAN WIERCIGROCH

We investigate experimentally and numerically suppression of drill-string torsional vibration while drilling by using a sliding mode control. The experiments are conducted on the novel experimental drill-string dynamics rig developed at the University of Aberdeen (Wiercigroch, M., 2010, Modelling and Analysis of BHA and Drill-string Vibrations) and using commercial Polycrystalline Diamond Compact (PDC) drill-bits and rock-samples. A mathematical model of the experimental setup, which takes into account the dynamics of the drill-string and the driving motor, is constructed. Physical parameters of the experimental rig are identified in order to calibrate the mathematical model and consequently to ensure robust predictions and a close agreement between experimental and numerical results for stick–slip vibration is shown. Then, a sliding mode control method is employed to suppress stick–slip vibration. A special attention is paid to prove the Lyapunov stability of the controller in presence of model parameter uncertainties by defining a robust Lyapunov function. Again experimental and numerical results for the control cases are in a close agreement. Stick–slip vibration is eliminated and a significant reduction in vibration amplitude has been observed when using the sliding controller.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ruo Lin Wang ◽  
H. Gu ◽  
G. Song

This paper presents an experimental study of an adaptive robust sliding mode control scheme based on the Lyapunov’s direct method for active vibration control of a flexible beam using PZT (lead zirconate titanate) sensor and actuator. PZT, a type of piezoceramic material, has the advantages of high reliability, high bandwidth, and solid state actuation and is adopted here in forms of surface-bond patches for vibration control. Two adaptive robust sliding mode controllers for vibration suppression are designed: one uses a discontinuous bang-bang robust compensator and the other uses a smooth compensator with a hyperbolic tangent function. Both controllers guarantee asymptotic stability, as proved by the Lyapunov’s direct method. Experimental results verified the effectiveness and the robustness of both adaptive sliding mode controllers. However, from the experimental results, the bang-bang robust compensator causes small-magnitude chattering because of the discontinuous switching actions. With the smooth compensator, vibration is quickly suppressed and no chattering is induced. Furthermore, the robustness of the controllers is successfully demonstrated with ensured effectiveness in vibration control when masses are added to the flexible beam.


2018 ◽  
Vol 148 ◽  
pp. 16008 ◽  
Author(s):  
Vahid Vaziri ◽  
Marcin Kapitaniak ◽  
Marian Wiercigroch

We investigate experimentally and numerically suppression of drill-string torsional vibration while drilling by using a sliding mode control. The experiments are conducted on the novel experimental drilling rig developed at the University of Aberdeen [1] and using PDC commercial drill-bits and real rock-samples. A mathematical model of the experimental setup which takes into account the dynamics of the drill-string and the driving motor, is proposed. Then a sliding mode control method is employed to suppress stick-slip oscillations. The experimental and numerical results considering a time delay of the actuator are in a close agreement. Stick-slip vibration is eliminated and significant reduction in vibration amplitude has been observed when using the controller.


Author(s):  
James D. J. MacLean ◽  
Vahid Vaziri ◽  
Sumeet S. Aphale ◽  
Marian Wiercigroch

AbstractIn this work, performance of a modified-integral resonant controller with integral tracking is investigated numerically under the effects of actuator delay and actuation constraints. Actuation delay and constraints naturally limit controller performance, so much so that it can cause instabilities. A 2-DOF drill-string m with nonlinear bit–rock interactions is analysed. The aforementioned control scheme is implemented on this system and analysed under the effects of actuation delay and constraints and it is found to be highly effective at coping with these limitations. The scheme is then compared to sliding-mode control and shows to be superior in many regimes of operation. Lastly, the scheme is analysed in detail by varying its gains as well as varying system parameters, most notably that of actuation delay.


Author(s):  
Fourat Zribi ◽  
Lilia Sidhom ◽  
Mohamed Gharib ◽  
Shady S. Refaat ◽  
Abdelkader Mami

Abstract Drill strings are complex dynamical systems with many uncertain parameters. The drill string interaction with the borehole produces a variety of undesired oscillations. The stickslip phenomenon is the extreme state of torsional vibrations, which causes the drill string to stop rotating and then spin free periodically. This non-uniform rotation may cause the wear of expensive equipment or even catastrophic failures in drill strings. Therefore, it is essential to study the drilling parameters in order to develop appropriate control approach for the suppression of the stick-slip vibration. However, the complexity of the drill string system poses several modeling and control challenges. The drill string model challenges include thermal, physical, electrical, and environmental influences on the stick-slip, simple enough to perform the analysis and control purposes. The control challenges include dealing with the complex dynamics of nonlinear friction, minimize nonlinear torque on the bit, and perform more robust during operating conditions. The control techniques are divided into two major approaches: passive and active control approaches. The passive control approaches include design sophisticated bits (with depth of cut control technology) to limit the reactive torque that might lead to the stick-slip, optimizing the drilling parameters, and using antivibration down hole tools. The active control approaches are on active anti-vibration control methods due to the improvements in the real-time measurement and control systems. Two of the most common active control techniques used in drill string system are proportional-derivative and sliding mode control methods. This paper presents an overview and a comparative study of the common control methods belonging to the common active control methods to mitigate the stick-slip phenomenon in drill string systems. The main objective is to assess the impact of the active control approaches to mitigate the stick-slip phenomenon. First, the common model for drillstring system is presented. Then, the study presents analyses of different drilling parameters, such as the weight on bit (WOB) and associated torque on bit (TOB) that define the bit aggressiveness, which are key in mitigating stick-slip vibration. These parameters have been considered as the comparison factors. Furthermore, this study details the design process of these controllers, and evaluates the performances of the different control systems to track the reference signal of bit velocity taking into account parametric uncertainties. Discussion and recommendation about the drilling parameters optimization are presented. This paper provides the necessary information needed for modeling and control of drillstring systems with minimum stick-slip vibrations. The results show that the adaptive sliding mode controller succeeded to eliminate the stick-slip phenomenon with better robustness to parametric uncertainties and weight on bit variations compared to the other controllers.


Sign in / Sign up

Export Citation Format

Share Document