scholarly journals DFT Study on the Co-Xe Bond in the HCo(CO)3Xe Adduct

2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Tamás Kégl

The metal-xenon interaction has been studied in hydrido-cobalt-carbonyl complexes by means of density functional methods. The method of choice has been selected after testing various functionals including dispersion correction on the bond dissociation enthalpy of Xe in the Cr(CO)5Xe adduct. In general, the long range corrected versions of popular gradient-corrected functionals performed well. In particular, LC-mPWPW91 resulted in a perfect match with available experimental data; therefore this functional was selected for the computation of HCo(CO)3Xe adducts. For HCo(CO)3Xe two isomers have been located; the structure with CS symmetry has proved to be more stable by 5.3 kcal/mol than the C3V adduct in terms of free energy. The formation of HCo(CO)3Xe is, however, endergonic by 3.5 kcal/mol for the CS isomer.

2001 ◽  
Vol 40 (9) ◽  
pp. 2201-2203 ◽  
Author(s):  
Hauke Paulsen ◽  
Lars Duelund ◽  
Heiner Winkler ◽  
Hans Toftlund ◽  
Alfred X. Trautwein

2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
U. C. Abdul Jaleel ◽  
M. Rakhila ◽  
Geetha Parameswaran

Computational tools, specifically molecular mechanical force field (MM+) and semiempirical (PM3) and density functional methods (DFT) are applied to sets of schiff bases and their complexes. The results are compared with experimental data. It is also found that the simulated IR spectra are in consistence with the experimental data.


2015 ◽  
Vol 93 (3) ◽  
pp. 279-288 ◽  
Author(s):  
Rupinder preet Kaur ◽  
Damanjit Kaur ◽  
Ritika Sharma

The present investigation deals with the study of the N–H bond dissociation enthalpies (BDEs) of the Y-substituted (NH2-C(=X)Y-R) and N-substituted ((R)(H)NC(=X)YH) carbamates (X, Y = O, S, Se; R = H, CH3, F, Cl, NH2), which have been evaluated using ab initio and density functional methods. The variations in N−H BDEs of these Y-substituted and N-substituted carbamates as the effect of substituent have been understood in terms of molecule stabilization energy (ME) and radical stabilization energy (RE), which have been calculated using the isodesmic reactions. The natural bond orbital analysis indicated that the electrodelocalization of the lone pairs of heteroatoms in the molecules and radicals affect the ME and RE values depending upon the type and site of substitution (whether N- or Y-). The variations in N−H BDEs depend upon the combined effect of molecule stabilization and radical stabilization by the various substituents.


2004 ◽  
Vol 03 (01) ◽  
pp. 117-144 ◽  
Author(s):  
AKIRA YOSHIMORI

This article reviews microscopic development of time dependent functional method and its application to chemical physics. It begins with the formulation of density functional theory. The time dependent extension is discussed after the equilibrium formulation. Its application is explained by solvation dynamics. In addition, it reviews studies of nonlinear effects on polar liquids and simple mixtures.


Sign in / Sign up

Export Citation Format

Share Document