scholarly journals Different Random Distributions Research on Logistic-Based Sample Assumption

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Jing Pan ◽  
Qun Ding ◽  
Lei Ning ◽  
Yanbin Zheng

Logistic-based sample assumption is proposed in this paper, with a research on different random distributions through this system. It provides an assumption system of logistic-based sample, including its sample space structure. Moreover, the influence of different random distributions for inputs has been studied through this logistic-based sample assumption system. In this paper, three different random distributions (normal distribution, uniform distribution, and beta distribution) are used for test. The experimental simulations illustrate the relationship between inputs and outputs under different random distributions. Thereafter, numerical analysis infers that the distribution of outputs depends on that of inputs to some extent, and this assumption system is not independent increment process, but it is quasistationary.

2015 ◽  
Vol 32 (1) ◽  
pp. 3-17
Author(s):  
Naresh K. Sharma ◽  
Elizabeth A. Cudney

Purpose – Complexity is an important element in axiomatic design theory. The current method for calculating complexity for a system following normal distribution is unbounded and approximate. The purpose of this paper is to present a detailed bounded solution for complexity using design and system ranges on a single function requirement. Design/methodology/approach – This paper discusses the complexity measure for a system following a uniform distribution. The complexities of two types of systems, a system performing with a uniform distribution and a system performing on target according to a normal distribution are then considered and compared. The research proposes a complexity measure for a system performing within specification limits with a uniform distribution. In addition, a new concept of relative complexity is proposed. Findings – A bounded solution for complexity for a normal distribution based on the existing assumptions was given which includes bias in addition to variance. The bounded solution was then compared to the existing approximate solution from the variance as well as bias standpoint. It was found that bias has an inappropriately reverse relationship with the bounded solution of complexity. Therefore, complexity cannot be used to approximate the system improvement when the improvement is based on a reduction in bias. Originality/value – The current method for calculating complexity for a system following normal distribution is unbounded and approximate. This paper proposed a complexity measure for a system performing within specification limits with a uniform distribution.


2021 ◽  
Vol 14 (03) ◽  
Author(s):  
Kai Yao

Uncertain processes are used to model dynamic indeterminate systems associated with human uncertainty, and uncertain independent increment processes are a type of uncertain processes with independent uncertain increments. This paper mainly verifies a basic property about the sample paths of uncertain independent increment processes, which states that uncertain independent increment processes defined on a continuous uncertainty space are contour processes, a type of uncertain processes with a spectrum of sample paths as the skeletons. Based on this property, the extreme values and the time integral of an uncertain independent increment process are investigated, and their inverse uncertainty distributions are obtained.


Author(s):  
Vera Pawlowsky-Glahn ◽  
Richardo A. Olea

The problem of estimation of a coregionalization of size q using cokriging will be discussed in this chapter. Cokriging—a multivariate extension of kriging—is the usual procedure applied to multivariate regionalized problems within the framework of geostatistics. Its fundament is a distribution-free, linear, unbiased estimator with minimum estimation variance, although the absence of constraints on the estimator is an implicit assumption that the multidimensional real space is the sample space of the variables under consideration. If a multivariate normal distribution can be assumed for the vector random function, then the simple kriging estimator is identical with the conditional expectation, given a sample of size N. See Journel (1977, pp. 576-577), Journel (1980, pp. 288-290), Cressie (1991, p. 110), and Diggle, Tawn, and Moyeed (1998, p. 300) for further details. This estimator is in general the best possible linear estimator, as it is unbiased and has minimum estimation variance, but it is not very robust in the face of strong departures from normality. Therefore, for the estimation of regionalized compositions other distributions must also be taken into consideration. Recall that compositions cannot follow a multivariate normal distribution by definition, their sample space being the simplex. Consequently, regionalized compositions in general cannot be modeled under explicit or implicit assumptions of multivariate Gaussian processes. Here only the multivariate lognormal and additive logistic normal distributions will be addressed. Besides the logarithmic and additive logratio transformations, others can be applied, such as the multivariate Box-Cox transformation, as stated by Andrews et al. (1971), Rayens and Srinivasan (1991), and Barcelo-Vidal (1996). Furthermore, distributions such as the multiplicative logistic normal distribution introduced by Aitchison (1986, p. 131) or the additive logistic skew-normal distribution defined by Azzalini and Dalla Valle (1996) can be investigated in a similar fashion. References to the literature for the fundamental principles of the theory discussed in this chapter were given in Chapter 2. Among those, special attention is drawn to the work of Myers (1982), where matrix formulation of cokriging was first presented and the properties included in the first section of this chapter were stated.


2012 ◽  
Vol 22 (6) ◽  
pp. 864-875 ◽  
Author(s):  
Marcelo Luiz Pereira ◽  
Rogério Vilain ◽  
Flávio Henrique Ferreira Galvão ◽  
Arlindo Tribess ◽  
Lidia Morawska

2012 ◽  
Vol 209-211 ◽  
pp. 384-387
Author(s):  
Zi Li Long

This article explores the space structure of Yongding district in Zhangjiajie, as a representative of the west small towns in China, then reveals the relationship between the space structure and the town’s landscape genes, and points out the importance of the landscape genes for molding city characteristics.


Sign in / Sign up

Export Citation Format

Share Document