scholarly journals Dynamics of Almost Periodic BAM Neural Networks with Neutral Delays

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Yaqin Li

The paper investigates the almost periodic oscillatory properties of neutral-type BAM neural networks with time-varying delays. By employing the contracting mapping principle and constructing suitable Lyapunov functional, several sufficient conditions are established for the existence, uniqueness, and global exponential stability of almost periodic solution of the system. The results of this paper are new and a simple example is given to illustrate the effectiveness of the new results.

2007 ◽  
Vol 17 (05) ◽  
pp. 395-406 ◽  
Author(s):  
JUN CHEN ◽  
BAOTONG CUI ◽  
YAN JI

This paper presents some sufficient conditions for the existence and global exponential stability of the almost periodic solution for impulsive bi-directional associative memory neural networks with time-varying delays by using Lyapunov functional and Gronwall-Bellmans inequality technique. Comparing with known literatures, the results of this paper are new and they complement previously known results.


2012 ◽  
Vol 2012 ◽  
pp. 1-18
Author(s):  
Tetie Pan ◽  
Bao Shi ◽  
Jian Yuan

A class of BAM neural networks with variable coefficients and neutral delays are investigated. By employing fixed-point theorem, the exponential dichotomy, and differential inequality techniques, we obtain some sufficient conditions to insure the existence and globally exponential stability of almost periodic solution. This is the first time to investigate the almost periodic solution of the BAM neutral neural network and the results of this paper are new, and they extend previously known results.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Wenquan Wu

This paper is concerned with the problem of the existence, uniqueness, and global exponential stability for neutral-type cellular neural networks with distributed delays. Based on fixed point theory and Lyapunov functional, several sufficient conditions are established for the existence, uniqueness, and global exponential stability of almost periodic solution for the above system. Finally, a simple example is given to illustrate the feasibility and effectiveness of our main results.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Yongzhi Liao ◽  
Wenquan Wu ◽  
Tianwei Zhang

This paper is concerned with the problem of the existence, uniqueness, and global exponential stability of almost periodic solution for neutral-type Cohen-Grossberg neural networks with time delays. Based on fixed point theory and Lyapunov functional, several sufficient conditions are established for the existence, uniqueness, and global exponential stability of almost periodic solution for the above system. Finally, an example and numerical simulations are given to illustrate the feasibility and effectiveness of our main results.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Yingwei Li

The global exponential stability issues are considered for almost periodic solution of the neural networks with mixed time-varying delays and discontinuous neuron activations. Some sufficient conditions for the existence, uniqueness, and global exponential stability of almost periodic solution are achieved in terms of certain linear matrix inequalities (LMIs), by applying differential inclusions theory, matrix inequality analysis technique, and generalized Lyapunov functional approach. In addition, the existence and asymptotically almost periodic behavior of the solution of the neural networks are also investigated under the framework of the solution in the sense of Filippov. Two simulation examples are given to illustrate the validity of the theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Huaiqin Wu ◽  
Luying Zhang

This paper is concerned with the dynamical stability analysis for almost periodic solution of memristive neural networks with time-varying delays. Under the framework of Filippov solutions, by applying the inequality analysis techniques, the existence and asymptotically almost periodic behavior of solutions are discussed. Based on the differential inclusions theory and Lyapunov functional approach, the stability issues of almost periodic solution are investigated, and a sufficient condition for the existence, uniqueness, and global exponential stability of the almost periodic solution is established. Moreover, as a special case, the condition which ensures the global exponential stability of a unique periodic solution is also presented for the considered memristive neural networks. Two examples are given to illustrate the validity of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document