scholarly journals Control of the Fractional-Order Chen Chaotic System via Fractional-Order Scalar Controller and Its Circuit Implementation

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Qiong Huang ◽  
Chunyang Dong ◽  
Qianbin Chen

A fractional-order scalar controller which involves only one state variable is proposed. By this fractional-order scalar controller, the unstable equilibrium points in the fractional-order Chen chaotic system can be asymptotically stable. The present control strategy is theoretically rigorous. Some circuits are designed to realize these control schemes. The outputs of circuit agree with the results of theoretical results.

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3130
Author(s):  
Zain-Aldeen S. A. Rahman ◽  
Basil H. Jasim ◽  
Yasir I. A. Al-Yasir ◽  
Raed A. Abd-Alhameed

Fractional-order chaotic systems have more complex dynamics than integer-order chaotic systems. Thus, investigating fractional chaotic systems for the creation of image cryptosystems has been popular recently. In this article, a fractional-order memristor has been developed, tested, numerically analyzed, electronically realized, and digitally implemented. Consequently, a novel simple three-dimensional (3D) fractional-order memristive chaotic system with a single unstable equilibrium point is proposed based on this memristor. This fractional-order memristor is connected in parallel with a parallel capacitor and inductor for constructing the novel fractional-order memristive chaotic system. The system’s nonlinear dynamic characteristics have been studied both analytically and numerically. To demonstrate the chaos behavior in this new system, various methods such as equilibrium points, phase portraits of chaotic attractor, bifurcation diagrams, and Lyapunov exponent are investigated. Furthermore, the proposed fractional-order memristive chaotic system was implemented using a microcontroller (Arduino Due) to demonstrate its digital applicability in real-world applications. Then, in the application field of these systems, based on the chaotic behavior of the memristive model, an encryption approach is applied for grayscale original image encryption. To increase the encryption algorithm pirate anti-attack robustness, every pixel value is included in the secret key. The state variable’s initial conditions, the parameters, and the fractional-order derivative values of the memristive chaotic system are used for contracting the keyspace of that applied cryptosystem. In order to prove the security strength of the employed encryption approach, the cryptanalysis metric tests are shown in detail through histogram analysis, keyspace analysis, key sensitivity, correlation coefficients, entropy analysis, time efficiency analysis, and comparisons with the same fieldwork. Finally, images with different sizes have been encrypted and decrypted, in order to verify the capability of the employed encryption approach for encrypting different sizes of images. The common cryptanalysis metrics values are obtained as keyspace = 2648, NPCR = 0.99866, UACI = 0.49963, H(s) = 7.9993, and time efficiency = 0.3 s. The obtained numerical simulation results and the security metrics investigations demonstrate the accuracy, high-level security, and time efficiency of the used cryptosystem which exhibits high robustness against different types of pirate attacks.


2017 ◽  
Vol 2017 ◽  
pp. 1-5
Author(s):  
Shiyun Shen ◽  
Meihua Ke ◽  
Ping Zhou

One 3D fractional-order chaotic system with only one locally asymptotically stable equilibrium is reported. To verify the chaoticity, the maximum Lyapunov exponent (MAXLE) with respect to the fractional-order and chaotic attractors are obtained by numerical calculation for this system. Furthermore, by linear scalar controller consisting of a single state variable, one control scheme for stabilization of the 3D fractional-order chaotic system is suggested. The numerical simulations show the feasibility of the control scheme.


2017 ◽  
Vol 11 (2) ◽  
pp. 96-103 ◽  
Author(s):  
Fernando Serrano ◽  
Josep M. Rossell

AbstractIn this paper a hybrid passivity based and fuzzy type-2 controller for chaotic and hyper-chaotic systems is presented. The proposed control strategy is an appropriate choice to be implemented for the stabilization of chaotic and hyper-chaotic systems due to the energy considerations of the passivity based controller and the flexibility and capability of the fuzzy type-2 controller to deal with uncertainties. As it is known, chaotic systems are those kinds of systems in which one of their Lyapunov exponents is real positive, and hyper-chaotic systems are those kinds of systems in which more than one Lyapunov exponents are real positive. In this article one chaotic Lorentz attractor and one four dimensions hyper-chaotic system are considered to be stabilized with the proposed control strategy. It is proved that both systems are stabilized by the passivity based and fuzzy type-2 controller, in which a control law is designed according to the energy considerations selecting an appropriate storage function to meet the passivity conditions. The fuzzy type-2 controller part is designed in order to behave as a state feedback controller, exploiting the flexibility and the capability to deal with uncertainties. This work begins with the stability analysis of the chaotic Lorentz attractor and a four dimensions hyper-chaotic system. The rest of the paper deals with the design of the proposed control strategy for both systems in order to design an appropriate controller that meets the design requirements. Finally, numerical simulations are done to corroborate the obtained theoretical results.


Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 564 ◽  
Author(s):  
Jesus Munoz-Pacheco ◽  
Ernesto Zambrano-Serrano ◽  
Christos Volos ◽  
Sajad Jafari ◽  
Jacques Kengne ◽  
...  

In this work, a new fractional-order chaotic system with a single parameter and four nonlinearities is introduced. One striking feature is that by varying the system parameter, the fractional-order system generates several complex dynamics: self-excited attractors, hidden attractors, and the coexistence of hidden attractors. In the family of self-excited chaotic attractors, the system has four spiral-saddle-type equilibrium points, or two nonhyperbolic equilibria. Besides, for a certain value of the parameter, a fractional-order no-equilibrium system is obtained. This no-equilibrium system presents a hidden chaotic attractor with a `hurricane’-like shape in the phase space. Multistability is also observed, since a hidden chaotic attractor coexists with a periodic one. The chaos generation in the new fractional-order system is demonstrated by the Lyapunov exponents method and equilibrium stability. Moreover, the complexity of the self-excited and hidden chaotic attractors is analyzed by computing their spectral entropy and Brownian-like motions. Finally, a pseudo-random number generator is designed using the hidden dynamics.


Sign in / Sign up

Export Citation Format

Share Document