scholarly journals The Existence of Periodic Orbits and Invariant Tori for Some 3-Dimensional Quadratic Systems

2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Yanan Jiang ◽  
Maoan Han ◽  
Dongmei Xiao

We use the normal form theory, averaging method, and integral manifold theorem to study the existence of limit cycles in Lotka-Volterra systems and the existence of invariant tori in quadratic systems inℝ3.

2020 ◽  
Vol 30 (16) ◽  
pp. 2030050
Author(s):  
Bing Zeng ◽  
Pei Yu

In recent publications [Llibre, 2014; Llibre & Makhlouf, 2020], time-averaging method was applied to studying periodic orbits bifurcating from zero-Hopf critical points of two Rössler systems. It was shown that the averaging method is successful for a certain type of zero-Hopf critical points, but fails for some type of such critical points. In this paper, we apply normal form theory to reinvestigate the bifurcation and show that the method of normal forms is applicable for all types of zero-Hopf bifurcations, revealing why the time-averaging method fails for some type of zero-Hopf bifurcation.


2016 ◽  
Vol 26 (05) ◽  
pp. 1650079 ◽  
Author(s):  
Wenjing Zhang ◽  
Pei Yu

This paper is concerned with bifurcation and stability in an autoimmune model, which was established to study an important phenomenon — blips arising from such models. This model has two equilibrium solutions, disease-free equilibrium and disease equilibrium. The positivity of the solutions of the model and the global stability of the disease-free equilibrium have been proved. In this paper, we particularly focus on Hopf bifurcation which occurs from the disease equilibrium. We present a detailed study on the use of center manifold theory and normal form theory, and derive the normal form associated with Hopf bifurcation, from which the approximate amplitude of the bifurcating limit cycles and their stability conditions are obtained. Particular attention is also paid to the bifurcation of multiple limit cycles arising from generalized Hopf bifurcation, which may yield bistable phenomenon involving equilibrium and oscillating motion. This result may explain some complex dynamical behavior in real biological systems. Numerical simulations are compared with the analytical predictions to show a very good agreement.


Author(s):  
Eric A. Butcher ◽  
S. C. Sinha

Abstract In this paper, some analysis techniques for general time-periodic nonlinear Hamiltonian dynamical systems have been presented. Unlike the traditional perturbation or averaging methods, these techniques are applicable to systems whose Hamiltonians contain ‘strong’ parametric excitation terms. First, the well-known Liapunov-Floquet (L-F) transformation is utilized to convert the time-periodic dynamical system to a form in which the linear pan is time invariant. At this stage two viable alternatives are suggested. In the first approach, the resulting dynamical system is transformed to a Hamiltonian normal form through an application of permutation matrices. It is demonstrated that this approach is simple and straightforward as opposed to the traditional methods where a complicated set of algebraic manipulations are required. Since these operations yield Hamiltonians whose quadratic parts are integrable and time-invariant, further analysis can be carried out by the application of action-angle coordinate transformation and Hamiltonian perturbation theory. In the second approach, the resulting quasilinear time-periodic system (with a time-invariant linear part) is directly analyzed via time-dependent normal form theory. In many instances, the system can be analyzed via time-independent normal form theory or by the method of averaging. Examples of a nonlinear Mathieu’s equation and coupled nonlinear Mathieu’s equations are included and some preliminary results are presented.


2018 ◽  
Vol 16 (1) ◽  
pp. 1255-1265
Author(s):  
Yongjian Liu ◽  
Xiezhen Huang ◽  
Jincun Zheng

AbstractIn this paper, chaos and bifurcation are explored for the controlled chaotic system, which is put forward based on the hybrid strategy in an unusual chaotic system. Behavior of the controlled system with variable parameter is researched in detain. Moreover, the normal form theory is used to analyze the direction and stability of bifurcating periodic solution.


2018 ◽  
Vol 28 (11) ◽  
pp. 1850139 ◽  
Author(s):  
Laigang Guo ◽  
Pei Yu ◽  
Yufu Chen

This paper is concerned with the number of limit cycles bifurcating in three-dimensional quadratic vector fields with [Formula: see text] symmetry. The system under consideration has three fine focus points which are symmetric about the [Formula: see text]-axis. Center manifold theory and normal form theory are applied to prove the existence of 12 limit cycles with [Formula: see text]–[Formula: see text]–[Formula: see text] distribution in the neighborhood of three singular points. This is a new lower bound on the number of limit cycles in three-dimensional quadratic systems.


2019 ◽  
Vol 29 (11) ◽  
pp. 1950154 ◽  
Author(s):  
Jiazhe Lin ◽  
Rui Xu ◽  
Xiaohong Tian

Since the electromagnetic field of neural networks is heterogeneous, the diffusion phenomenon of electrons exists inevitably. In this paper, we investigate the existence of Turing–Hopf bifurcation in a reaction–diffusion neural network. By the normal form theory for partial differential equations, we calculate the normal form on the center manifold associated with codimension-two Turing–Hopf bifurcation, which helps us understand and classify the spatiotemporal dynamics close to the Turing–Hopf bifurcation point. Numerical simulations show that the spatiotemporal dynamics in the neighborhood of the bifurcation point can be divided into six cases and spatially inhomogeneous periodic solution appears in one of them.


Author(s):  
Wei Zhang ◽  
Feng-Xia Wang ◽  
Hong-Bo Wen

Abstract We present the analysis of codimension-3 degenerate bifurcations of a simply supported flexible beam subjected to harmonic axial excitation. The equation of motion with quintic nonlinear terms and the parametrical excitation for the simply supported flexible beam is derived. The main attention is focused on the dynamical properties of the global bifurcations including homoclinic bifurcations. With the aid of normal form theory, the explicit expressions of normal form associated with a double zero eigenvalues and Z2-symmetry for the averaged equations are obtained. Based on the normal form, it has been shown that a simply supported flexible beam subjected to the harmonic axial excitation can exhibit homoclinic bifurcations, multiple limit cycles, and jumping phenomena in amplitude modulated oscillations. Numerical simulations are also given to verify the good analytical predictions.


Author(s):  
Songhui Zhu ◽  
Pei Yu ◽  
Stacey Jones

Normal form theory is a powerful tool in the study of nonlinear systems, in particular, for complex dynamical behaviors such as stability and bifurcations. However, it has not been widely used in practice due to the lack of efficient computation methods, especially for high dimensional engineering problems. The main difficulty in applying normal form theory is to determine the critical conditions under which the dynamical system undergoes a bifurcation. In this paper a computationally efficient method is presented for determining the critical condition of Hopf bifurcation by calculating the Jacobian matrix and the Hurwitz condition. This method combines numerical and symbolic computation schemes, and can be applied to high dimensional systems. The Lorenz system and the extended Malkus-Robbins dynamo system are used to show the applicability of the method.


Sign in / Sign up

Export Citation Format

Share Document