scholarly journals Immersion and Invariance-Based Coordinated Generator Excitation and SVC Control for Power Systems

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Adirak Kanchanaharuthai

A nonlinear coordinated control of excitation and SVC of an electrical power system is proposed for transient stability, and voltage regulation enhancement after the occurrence of a large disturbance and a small perturbation. Using the concept of Immersion and Invariance (I&I) design methodology, the proposed nonlinear controller is used to not only achieve power angle stability, frequency and voltage regulation but also ensure that the closed-loop system is transiently and asymptotically stable. In order to show the effectiveness of the proposed controller design, the simulation results illustrate that, in spite of the case where a large perturbation occurs on the transmission line or there is a small perturbation to mechanical power inputs, the proposed controller can not only keep the system transiently stable but also simultaneously accomplish better dynamic properties of the system as compared to operation with the existing controllers designed through a coordinated passivation technique controller and a feedback linearization scheme, respectively.

2013 ◽  
Vol 2 (3) ◽  
pp. 216
Author(s):  
Rekha Chaudhary ◽  
Arun Kumar Singh

The objective of this paper is to design controller for non-linear power system using Direct Feedback Linearization technique to improve the transient stability and to achieve better voltage regulation. In case of fault in the power system, power angle and the terminal voltage are the parameters which are to be monitored. The simulation has been carried out taking different values of initial power angles and results were obtained for power angle and terminal voltage. To overcome the demerits of DFL-LQ optimal controller and DFL voltage regulator, co-ordinated controller is proposed. Simulation results show that transient stability of a power system under a large sudden fault has been improved by using co-ordinated controller.


2001 ◽  
Vol 21 (10) ◽  
pp. 60-60 ◽  
Author(s):  
Y. Guo ◽  
D. J. Hill ◽  
Y. Wang

2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Nancy Visairo-Cruz ◽  
Ciro Núñez-Gutiérrez ◽  
Eliseo Alcázar ◽  
Elías Rodríguez

The requirements of PWM rectifiers for delivering power to motor drives include power factor correction and output voltage regulation even when strong variations such as voltage sags and dynamic load transients occur simultaneously. To achieve these objectives, the classic approach is to use a two-loop controller with its d-q model. In this paper, the authors propose a simplified approach to address that problem by using a feedback linearization-based nonlinear controller using only a single-loop current control and avoiding d-q modeling to reduce processing stages. To demonstrate the feasibility of this approach, several simulations are presented considering a 1.5 kW PWM rectifier.


Author(s):  
Shengtao Li ◽  
Xiaomei Liu ◽  
Xiaoping Liu

Transient stability is the key problem for reliable and secure planning under the new deregulated market conditions. By using immersion and invariance (I&I) method, a nonlinear coordinated generator excitation and steam-valve controller is designed to improve transient stability of power systems. The proposed coordinated I&I controller can assure power angle stability, voltage, and frequency regulations, when a large disturbance occurs on the transmission line or a small perturbation to mechanical power. Compared with the Lyapunov method, the proposed method does not need to construct a Lyapunov energy function. Some numerical simulations are used to validate the proposed controller. Simulation results show that the nonlinear coordinated I&I controller has better control performance than the existing coordinated passivation controller (CPC).


Sign in / Sign up

Export Citation Format

Share Document