scholarly journals Bifurcations of Tumor-Immune Competition Systems with Delay

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ping Bi ◽  
Heying Xiao

A tumor-immune competition model with delay is considered, which consists of two-dimensional nonlinear differential equation. The conditions for the linear stability of the equilibria are obtained by analyzing the distribution of eigenvalues. General formulas for the direction, period, and stability of the bifurcated periodic solutions are given for codimension one and codimension two bifurcations, including Hopf bifurcation, steady-state bifurcation, and B-T bifurcation. Numerical examples and simulations are given to illustrate the bifurcations analysis and obtained results.

2020 ◽  
Vol 30 (05) ◽  
pp. 2050074 ◽  
Author(s):  
Jianping Gao ◽  
Shangjiang Guo

In this paper, we present the theoretical results on the pattern formation of a modified Leslie–Gower diffusive predator–prey system with Beddington–DeAngelis functional response and nonlocal prey competition under Neumann boundary conditions. First, we investigate the local stability of homogeneous steady-state solutions and describe the effect of the nonlocal term on the stability of the positive homogeneous steady-state solution. Lyapunov–Schmidt method is applied to the study of steady-state bifurcation and Hopf bifurcation at the interior of constant steady state. In particular, we investigate the existence, stability and multiplicity of spatially nonhomogeneous steady-state solutions and spatially nonhomogeneous periodic solutions. Furthermore, we present a simple description of the dynamical behaviors of the system around the interaction of steady-state bifurcation curve and Hopf bifurcation curve. Finally, a numerical simulation is provided to show that the nonlocal competition term can destabilize the constant positive steady-state solution and lead to the occurrence of spatially nonhomogeneous steady-state solutions and spatially nonhomogeneous time-periodic solutions.


2003 ◽  
Vol 13 (06) ◽  
pp. 807-841 ◽  
Author(s):  
R. Ouifki ◽  
M. L. Hbid

The purpose of the paper is to prove the existence of periodic solutions for a functional differential equation with state-dependent delay, of the type [Formula: see text] Transforming this equation into a perturbed constant delay equation and using the Hopf bifurcation result and the Poincaré procedure for this last equation, we prove the existence of a branch of periodic solutions for the state-dependent delay equation, bifurcating from r ≡ 0.


Author(s):  
A. Yusnaeni ◽  
Kasbawati Kasbawati ◽  
Toaha Syamsuddin

AbstractIn this paper, we study a mathematical model of an immune response system consisting of a number of immune cells that work together to protect the human body from invading tumor cells. The delay differential equation is used to model the immune system caused by a natural delay in the activation process of immune cells. Analytical studies are focused on finding conditions in which the system undergoes changes in stability near a tumor-free steady-state solution. We found that the existence of a tumor-free steady-state solution was warranted when the number of activated effector cells was sufficiently high. By considering the lag of stimulation of helper cell production as the bifurcation parameter, a critical lag is obtained that determines the threshold of the stability change of the tumor-free steady state. It is also leading the system undergoes a Hopf bifurcation to periodic solutions at the tumor-free steady-state solution.Keywords: tumor–immune system; delay differential equation; transcendental function; Hopf bifurcation. AbstrakDalam makalah ini, dikaji model matematika dari sistem respon imun yang terdiri dari sejumlah sel imun yang bekerja sama untuk melindungi tubuh manusia dari invasi sel tumor. Persamaan diferensial tunda digunakan untuk memodelkan sistem kekebalan yang disebabkan oleh keterlambatan alami dalam proses aktivasi sel-sel imun. Studi analitik difokuskan untuk menemukan kondisi di mana sistem mengalami perubahan stabilitas di sekitar solusi kesetimbangan bebas tumor. Diperoleh bahwa solusi kesetimbangan bebas tumor dijamin ada ketika jumlah sel efektor yang diaktifkan cukup tinggi. Dengan mempertimbangkan tundaan stimulasi produksi sel helper sebagai parameter bifurkasi, didapatkan lag kritis yang menentukan ambang batas perubahan stabilitas dari solusi kesetimbangan bebas tumor. Parameter tersebut juga mengakibatkan sistem mengalami percabangan Hopf untuk solusi periodik pada solusi kesetimbangan bebas tumor.Kata kunci: sistem tumor–imun; persamaan differensial tundaan; fungsi transedental; bifurkasi Hopf.


2019 ◽  
Vol 29 (05) ◽  
pp. 1950065
Author(s):  
Yo Horikawa ◽  
Hiroyuki Kitajima ◽  
Haruna Matsushita

Quasiperiodicity and chaos in a ring of unidirectionally coupled sigmoidal neurons (a ring neural oscillator) caused by a single shortcut is examined. A codimension-two Hopf–Hopf bifurcation for two periodic solutions exists in a ring of six neurons without self-couplings and in a ring of four neurons with self-couplings in the presence of a shortcut at specific locations. The locus of the Neimark–Sacker bifurcation of the periodic solution emanates from the Hopf–Hopf bifurcation point and a stable quasiperiodic solution is generated. Arnold’s tongues emanate from the locus of the Neimark–Sacker bifurcation, and multiple chaotic oscillations are generated through period-doubling cascades of periodic solutions in the Arnold’s tongues. Further, such chaotic irregular oscillations due to a single shortcut are also observed in propagating oscillations in a ring of Bonhoeffer–van der Pol (BVP) neurons coupled unidirectionally by slow synapses.


2020 ◽  
Vol 4 (3) ◽  
pp. 39
Author(s):  
Rafał Brociek ◽  
Agata Chmielowska ◽  
Damian Słota

This paper presents the application of the swarm intelligence algorithm for solving the inverse problem concerning the parameter identification. The paper examines the two-dimensional Riesz space fractional diffusion equation. Based on the values of the function (for the fixed points of the domain) which is the solution of the described differential equation, the order of the Riesz derivative and the diffusion coefficient are identified. The paper includes numerical examples illustrating the algorithm’s accuracy.


2020 ◽  
Vol 30 (04) ◽  
pp. 2050059
Author(s):  
Dongxue Yan ◽  
Xianlong Fu

This paper deals with an age-structured HIV infection model with logistic growth for target cells and both virus-to-cell and cell-to-cell infection routes. Based on the existence of the infection-free and infection equilibria and some rigorous analyses for the considered model, we study the asymptotic stability of these equilibria via determining the distribution of eigenvalues. We also address the persistence of the solution semi-flow by proving the existence of a global attractor. Furthermore, Hopf bifurcation occurring at the positive steady state is exploited. At last, some numerical examples are provided to illustrate the obtained results.


2019 ◽  
Vol 6 (4) ◽  
pp. 647-656 ◽  
Author(s):  
Takayuki Yamada

Abstract A unified method for extracting geometric shape features from binary image data using a steady-state partial differential equation (PDE) system as a boundary value problem is presented in this paper. The PDE and functions are formulated to extract the thickness, orientation, and skeleton simultaneously. The main advantage of the proposed method is that the orientation is defined without derivatives and thickness computation is not imposed a topological constraint on the target shape. A one-dimensional analytical solution is provided to validate the proposed method. In addition, two-dimensional numerical examples are presented to confirm the usefulness of the proposed method. Highlights A steady state partial differential equation for extraction of geometrical shape features is formulated. The functions for geometrical shape features are formulated by the solution of the proposed PDE. Analytical solution is provided in one-dimension. Numerical examples are provided in two-dimension.


2016 ◽  
Vol 26 (04) ◽  
pp. 1650066 ◽  
Author(s):  
Yan’e Wang ◽  
Jianhua Wu ◽  
Yunfeng Jia

A two-species biological depletion model in a bounded domain is investigated in which one species is a substrate and the other is an activator. Firstly, under the no-flux boundary condition, the asymptotic stability of constant steady-states is discussed. Secondly, by viewing the feed rate of the substrate as a parameter, the steady-state bifurcations from constant steady-states are analyzed both in one-dimensional kernel case and in two-dimensional kernel case. Finally, numerical simulations are presented to illustrate our theoretical results. The main tools adopted here include the stability theory, the bifurcation theory, the techniques of space decomposition and the implicit function theorem.


2012 ◽  
Vol 2012 ◽  
pp. 1-21
Author(s):  
Jia-Fang Zhang

This paper is concerned with a delayed predator-prey diffusion model with Neumann boundary conditions. We study the asymptotic stability of the positive constant steady state and the conditions for the existence of Hopf bifurcation. In particular, we show that large diffusivity has no effect on the Hopf bifurcation, while small diffusivity can lead to the fact that spatially nonhomogeneous periodic solutions bifurcate from the positive constant steady-state solution when the system parameters are all spatially homogeneous. Meanwhile, we study the properties of the spatially nonhomogeneous periodic solutions applying normal form theory of partial functional differential equations (PFDEs).


Sign in / Sign up

Export Citation Format

Share Document