scholarly journals Boundary Stabilization of a Semilinear Wave Equation with Variable Coefficients under the Time-Varying and Nonlinear Feedback

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Bei Gong ◽  
Xiaopeng Zhao

We study the boundary stabilization of a semilinear wave equation with variable coefficients under the time-varying and nonlinear feedback. By the Riemannian geometry methods, we obtain the stability results of the system under suitable assumptions of the bound of the time-varying term and the nonlinearity of the nonlinear term.

2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Jian-Sheng Tian ◽  
Wei Wang ◽  
Fei Xue ◽  
Pei-Yong Cong

We study the stabilization of the wave equation with variable coefficients in a bounded domain and a time-varying and nonlinear term. By the Riemannian geometry methods and a suitable assumption of nonlinearity and the time-varying term, we obtain the uniform decay of the energy of the system.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
M. De la Sen

This paper formulates sufficiency-type global stability and asymptotic stability results for, in general, nonlinear time-varying dynamic systems with state-trajectory solution-dependent parameterizations. The stability proofs are based on obtaining sufficiency-type conditions which guarantee that either the norms of the solution trajectory or alternative interval-type integrals of the matrix of dynamics of the higher-order than linear terms do not grow faster than their available supremum on the preceding time intervals. Some extensions are also given based on the use of a truncated Taylor series expansion of chosen truncation order with multiargument integral remainder for the dynamics of the differential system.


2020 ◽  
pp. 1-57
Author(s):  
Mouhammad Ghader ◽  
Rayan Nasser ◽  
Ali Wehbe

We investigate the stability of a one-dimensional wave equation with non smooth localized internal viscoelastic damping of Kelvin–Voigt type and with boundary or localized internal delay feedback. The main novelty in this paper is that the Kelvin–Voigt and the delay damping are both localized via non smooth coefficients. Under sufficient assumptions, in the case that the Kelvin–Voigt damping is localized faraway from the tip and the wave is subjected to a boundary delay feedback, we prove that the energy of the system decays polynomially of type t − 4 . However, an exponential decay of the energy of the system is established provided that the Kelvin–Voigt damping is localized near a part of the boundary and a time delay damping acts on the second boundary. While, when the Kelvin–Voigt and the internal delay damping are both localized via non smooth coefficients near the boundary, under sufficient assumptions, using frequency domain arguments combined with piecewise multiplier techniques, we prove that the energy of the system decays polynomially of type t − 4 . Otherwise, if the above assumptions are not true, we establish instability results.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Qi Zhou ◽  
Xueying Shao ◽  
Jin Zhu ◽  
Hamid Reza Karimi

The stability problem is investigated for a class of uncertain networks of neutral type with leakage, time-varying discrete, and distributed delays. Both the parameter uncertainty and the generalized activation functions are considered in this paper. New stability results are achieved by constructing an appropriate Lyapunov-Krasovskii functional and employing the free weighting matrices and the linear matrix inequality (LMI) method. Some numerical examples are given to show the effectiveness and less conservatism of the proposed results.


2011 ◽  
Vol 217-218 ◽  
pp. 668-673
Author(s):  
Xiu Liu ◽  
Shou Ming Zhong ◽  
Xiu Yong Ding

The global exponential stability for switched neutral systems with time-varying delays and nonlinear perturbations is investigated in this paper. LMI-based delay-dependent criterion is proposed to guarantee exponential stability for our considered systems under any switched signal. Lyapunov-Krasovskii functional and Leibniz-Newton formula are applied to find the stability results. Free weighting matrix and linear matrix inequality (LMI) approaches are used to solve the proposed conditions.


Author(s):  
Shi-Zhuo Looi ◽  
Mihai Tohaneanu

Abstract We prove that solutions to the quintic semilinear wave equation with variable coefficients in ${{\mathbb {R}}}^{1+3}$ scatter to a solution to the corresponding linear wave equation. The coefficients are small and decay as $|x|\to \infty$ , but are allowed to be time dependent. The proof uses local energy decay estimates to establish the decay of the $L^{6}$ norm of the solution as $t\to \infty$ .


Sign in / Sign up

Export Citation Format

Share Document