scholarly journals Role of G Protein-Coupled Receptors in Control of Dendritic Cell Migration

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yuan Liu ◽  
Guixiu Shi

Dendritic cells (DCs) are highly efficient antigen-presenting cells. The migratory properties of DCs give them the capacity to be a sentinel of the body and the vital role in the induction and regulation of adaptive immune responses. Therefore, it is important to understand the mechanisms in control of migration of DCs to lymphoid and nonlymphoid tissues. This may provide us novel insight into the clinical treatment of diseases such as autoimmune disease, infectious disease, and tumor. The chemotactic G protein-coupled receptors (GPCR) play a vital role in control of DCs migration. Here, we reviewed the recent advances regarding the role of GPCR in control of migration of subsets of DCs, with a focus on the chemokine receptors. Understanding subsets of DCs migration could provide a rational basis for the design of novel therapies in various clinical conditions.

2019 ◽  
Vol 119 (04) ◽  
pp. 534-541 ◽  
Author(s):  
Selin Gencer ◽  
Emiel van der Vorst ◽  
Maria Aslani ◽  
Christian Weber ◽  
Yvonne Döring ◽  
...  

AbstractInflammation has been well recognized as one of the main drivers of atherosclerosis development and therefore cardiovascular diseases (CVDs). It has been shown that several chemokines, small 8 to 12 kDa cytokines with chemotactic properties, play a crucial role in the pathophysiology of atherosclerosis. Chemokines classically mediate their effects by binding to G-protein-coupled receptors called chemokine receptors. In addition, chemokines can also bind to atypical chemokine receptors (ACKRs). ACKRs fail to induce G-protein-dependent signalling pathways and thus subsequent cellular response, but instead are able to internalize, scavenge or transport chemokines. In this review, we will give an overview of the current knowledge about the involvement of ACKR1–4 in CVDs and especially in atherosclerosis development. In the recent years, several studies have highlighted the importance of ACKRs in CVDs, although there are still several controversies and unexplored aspects that have to be further elucidated. A better understanding of the precise role of these atypical receptors may pave the way towards novel and improved therapeutic strategies.


Author(s):  
Gayathri Viswanathan ◽  
Argen Mamazhakypov ◽  
Ralph T. Schermuly ◽  
Sudarshan Rajagopal

Biochimie ◽  
2014 ◽  
Vol 107 ◽  
pp. 28-32 ◽  
Author(s):  
Olivier Soubias ◽  
Walter E. Teague ◽  
Kirk G. Hines ◽  
Klaus Gawrisch

2013 ◽  
Vol 75 (9) ◽  
pp. 670-676 ◽  
Author(s):  
Susan Offner

A point mutation in the MC1R gene, a G-protein-coupled receptor, has been found that could have led to the formation of two subspecies of Solomon Island flycatcher from a single ancestral population. I discuss the many roles that G-protein-coupled receptors play in vertebrate physiology and how one particular point mutation can have enormous evolutionary consequences.


2000 ◽  
Vol 78 (5) ◽  
pp. 537-550 ◽  
Author(s):  
Barbara Vanderbeld ◽  
Gregory M Kelly

Heterotrimeric G proteins are involved in numerous biological processes, where they mediate signal transduction from agonist-bound G-protein-coupled receptors to a variety of intracellular effector molecules and ion channels. G proteins consist of two signaling moieties: a GTP-bound α subunit and a βγ heterodimer. The βγ dimer, recently credited as a significant modulator of G-protein-mediated cellular responses, is postulated to be a major determinant of signaling fidelity between G-protein-coupled receptors and downstream effectors. In this review we have focused on the role of βγ signaling and have included examples to demonstrate the heterogeneity in the heterodimer composition and its implications in signaling fidelity. We also present an overview of some of the effectors regulated by βγ and draw attention to the fact that, although G proteins and their associated receptors play an instrumental role in development, there is rather limited information on βγ signaling in embryogenesis.Key words: G protein, βγ subunit, G-protein-coupled receptor, signal transduction, adenylyl cyclase.


2016 ◽  
Vol 17 (10) ◽  
pp. 1635 ◽  
Author(s):  
Haruhiko Kanasaki ◽  
Aki Oride ◽  
Tomomi Hara ◽  
Tselmeg Mijiddorj ◽  
Unurjargal Sukhbaatar ◽  
...  

2019 ◽  
Vol 20 (6) ◽  
pp. 1402 ◽  
Author(s):  
Antonella Di Pizio ◽  
Maik Behrens ◽  
Dietmar Krautwurst

G protein-coupled receptors (GPCRs) belong to the largest class of drug targets. Approximately half of the members of the human GPCR superfamily are chemosensory receptors, including odorant receptors (ORs), trace amine-associated receptors (TAARs), bitter taste receptors (TAS2Rs), sweet and umami taste receptors (TAS1Rs). Interestingly, these chemosensory GPCRs (csGPCRs) are expressed in several tissues of the body where they are supposed to play a role in biological functions other than chemosensation. Despite their abundance and physiological/pathological relevance, the druggability of csGPCRs has been suggested but not fully characterized. Here, we aim to explore the potential of targeting csGPCRs to treat diseases by reviewing the current knowledge of csGPCRs expressed throughout the body and by analysing the chemical space and the drug-likeness of flavour molecules.


2004 ◽  
Vol 279 (34) ◽  
pp. 35687-35691 ◽  
Author(s):  
Colin Debaigt ◽  
Harald Hirling ◽  
Pascal Steiner ◽  
Jean-Pierre Vincent ◽  
Jean Mazella

Sign in / Sign up

Export Citation Format

Share Document