scholarly journals Adaptive Model Predictive Vibration Control of a Cantilever Beam with Real-Time Parameter Estimation

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Gergely Takács ◽  
Tomáš Polóni ◽  
Boris Rohal’-Ilkiv

This paper presents an adaptive-predictive vibration control system using extended Kalman filtering for the joint estimation of system states and model parameters. A fixed-free cantilever beam equipped with piezoceramic actuators serves as a test platform to validate the proposed control strategy. Deflection readings taken at the end of the beam have been used to reconstruct the position and velocity information for a second-order state-space model. In addition to the states, the dynamic system has been augmented by the unknown model parameters: stiffness, damping constant, and a voltage/force conversion constant, characterizing the actuating effect of the piezoceramic transducers. The states and parameters of this augmented system have been estimated in real time, using the hybrid extended Kalman filter. The estimated model parameters have been applied to define the continuous state-space model of the vibrating system, which in turn is discretized for the predictive controller. The model predictive control algorithm generates state predictions and dual-mode quadratic cost prediction matrices based on the updated discrete state-space models. The resulting cost function is then minimized using quadratic programming to find the sequence of optimal but constrained control inputs. The proposed active vibration control system is implemented and evaluated experimentally to investigate the viability of the control method.

2007 ◽  
Vol 97 (3) ◽  
pp. 2516-2524 ◽  
Author(s):  
Anne C. Smith ◽  
Sylvia Wirth ◽  
Wendy A. Suzuki ◽  
Emery N. Brown

Accurate characterizations of behavior during learning experiments are essential for understanding the neural bases of learning. Whereas learning experiments often give subjects multiple tasks to learn simultaneously, most analyze subject performance separately on each individual task. This analysis strategy ignores the true interleaved presentation order of the tasks and cannot distinguish learning behavior from response preferences that may represent a subject's biases or strategies. We present a Bayesian analysis of a state-space model for characterizing simultaneous learning of multiple tasks and for assessing behavioral biases in learning experiments with interleaved task presentations. Under the Bayesian analysis the posterior probability densities of the model parameters and the learning state are computed using Monte Carlo Markov Chain methods. Measures of learning, including the learning curve, the ideal observer curve, and the learning trial translate directly from our previous likelihood-based state-space model analyses. We compare the Bayesian and current likelihood–based approaches in the analysis of a simulated conditioned T-maze task and of an actual object–place association task. Modeling the interleaved learning feature of the experiments along with the animal's response sequences allows us to disambiguate actual learning from response biases. The implementation of the Bayesian analysis using the WinBUGS software provides an efficient way to test different models without developing a new algorithm for each model. The new state-space model and the Bayesian estimation procedure suggest an improved, computationally efficient approach for accurately characterizing learning in behavioral experiments.


Author(s):  
Michel Touw ◽  
Jacob Lotz ◽  
Ido Akkerman

In this paper we investigate the efficacy of augmenting, or replacing, an active height control system for a submerged hydrofoil with a passive system based on springs and dampers. A state-space model for submerged hydrofoils is formulated and extended to allow for a suspension at the front wing, aft wing or both wings. The model is partially verified by obtaining results in the fixed-wing limit and comparing these with experimental data from the MARIN Foiling Future Demonstrator. In the current study we limit ourselves to translational springs, only allowing suspension motion in the heave direction. This results in unfavorable behavior: either the motions increased or the system becomes unstable. It is therefore recommended for future research to try rotational springs.


2018 ◽  
Vol 100 (4) ◽  
pp. 2177-2191 ◽  
Author(s):  
Agustín Tobías-González ◽  
Rafael Peña-Gallardo ◽  
Jorge Morales-Saldaña ◽  
Aurelio Medina-Ríos ◽  
Olimpo Anaya-Lara

2018 ◽  
Vol 13 (2) ◽  
pp. 326-337
Author(s):  
Yosuke Kawasaki ◽  
Yusuke Hara ◽  
Masao Kuwahara ◽  
◽  
◽  
...  

This study proposes a real-time monitoring method for two-dimensional (2D) networks via the fusion of probe data and a traffic flow model. In the Great East Japan Earthquake occurring on March 11, 2011, there was major traffic congestion as evacuees concentrated in cities on the Sanriku Coast. A tragedy occurred when a tsunami overtook the stuck vehicles. To evacuate safely and efficiently, the state of traffic must be monitored in real time on a 2D network, where all networks are linked. Generally, the traffic state is monitored only at observation points. However, observation data presents the risk of errors. Additionally, in the estimated traffic state of the 2D network, unlike non-intersecting road sections (i.e., one-dimensional), it is necessary to model user route choice behavior and origin/destination (OD) demand to input in the model. Therefore, in this study, we develop a state-space model that assimilates vehicle density and divergence ratio data obtained from probe vehicles in a traffic flow model that considers route choice. Our state-space model considers observational errors in the probe data and can simultaneously estimate traffic state and destination component ratio of OD demand. The result of simulated traffic model verification shows that the proposed model has good congestion estimation precision in a small-scale test network.


2017 ◽  
Vol 21 ◽  
pp. 42-55 ◽  
Author(s):  
Yosuke Kawasaki ◽  
Yusuke Hara ◽  
Masao Kuwahara

Sign in / Sign up

Export Citation Format

Share Document