scholarly journals Land Use Changes and Their Effects on the Value of Ecosystem Services in the Small Sanjiang Plain in China

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jing Chen ◽  
Bo-Ming Sun ◽  
Dan Chen ◽  
Xin Wu ◽  
Long-Zhu Guo ◽  
...  

The small Sanjiang plain is one of the most important commodity grain production bases and the largest fresh water wetland in China. Due to the rapid expansion of agricultural activities in the past 30 years, the contradiction between economic development and the loss of ecosystem services has become an issue of increasing concern in the area. In this study, we analysed land use changes and the loss of ecosystem services value caused by these changes. We found that cropland sprawl was predominant and occurred in forest, wetland, and grassland areas in the small Sanjiang plain from 1980 to 2010. Using a model to evaluate ecosystem services value, we calculated that the decreased values of ecosystem services were 169.88 × 108Yuan from 1980 to 2000 and 120.00 × 108Yuan from 2000 to 2010. All of the ecosystem services were diminished from 1980 to 2010 except for food production. Therefore, the loss of ecosystem services value should be considered by the policymakers of land use and development.

Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 501
Author(s):  
Xuege Wang ◽  
Fengqin Yan ◽  
Yinwei Zeng ◽  
Ming Chen ◽  
Bin He ◽  
...  

Extensive urbanization around the world has caused a great loss of farmland, which significantly impacts the ecosystem services provided by farmland. This study investigated the farmland loss due to urbanization in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) of China from 1980 to 2018 based on multiperiod datasets from the Land Use and Land Cover of China databases. Then, we calculated ecosystem service values (ESVs) of farmland using valuation methods to estimate the ecosystem service variations caused by urbanization in the study area. The results showed that 3711.3 km2 of farmland disappeared because of urbanization, and paddy fields suffered much higher losses than dry farmland. Most of the farmland was converted to urban residential land from 1980 to 2018. In the past 38 years, the ESV of farmland decreased by 5036.7 million yuan due to urbanization, with the highest loss of 2177.5 million yuan from 2000–2010. The hydrological regulation, food production and gas regulation of farmland decreased the most due to urbanization. The top five cities that had the largest total ESV loss of farmland caused by urbanization were Guangzhou, Dongguan, Foshan, Shenzhen and Huizhou. This study revealed that urbanization has increasingly become the dominant reason for farmland loss in the GBA. Our study suggests that governments should increase the construction of ecological cities and attractive countryside to protect farmland and improve the regional ESV.


2014 ◽  
Vol 11 (4) ◽  
pp. 349-356 ◽  
Author(s):  
Lei Jiang ◽  
Chongyang Li ◽  
Yan Chen

Land use changes significantly impacts ecosystem services and functions. The estimation of ecosystem services value is conducive to clarifying the ecological changes in response to LULC changes due to urbanization. Chengde was the upper water source of Beijing and Tianjin, the ecosystem is very fragile. After a series of ecology conservation projects like "returning cropland to forestry", the ecosystem service value increased from 5100.17 x 107 Yuan in 1990 to 5104.08 x 107 Yuan in 2008 respectively, with the average increase of 2.3 x 106 Yuan per year. It is indicated that ecosystem service value has the potential to inform policy decisions by emphasizing the benefits of sustainable ecosystem management. So plans on land use management should be made to maintain a balance between urbanization and ecosystem health.


2020 ◽  
Vol 20 (suppl 1) ◽  
Author(s):  
Marcela de Matos Barbosa ◽  
Liedson Tavares Carneiro ◽  
Manuela Franco de Carvalho da Silva Pereira ◽  
Catalina Zuluaga Rodriguez ◽  
Tássia Rayane Ferreira Chagas ◽  
...  

Abstract: Rapid land-use/land cover changes (LULCC) have led to habitat loss and fragmentation in the natural forest areas, which are mainly due to the intense and rapid expansion of urban areas and intense agricultural management. These processes are strongly threatening biodiversity maintenance and the ecosystem services provided by them. Among the ecosystem services under threat, pollination has been widely studied since this service is essential to promote food production and, therefore, human well-being. In a scenario of increasing LULCC it is crucial to understand the interplay between these changes, pollination demand by insect-dependent crops and pollinator availability to ensure these ecosystem services meet the increased demand for food production. In this study, we developed a conceptual model to disentangle the relationships between human-nature, especially LULCC, and its consequences, to the delivery of pollination service. We also presented a case study in the Brazilian São Paulo state, where we modeled the effects of predicted LULCC associated to agriculture expansion between the years 2012 and 2030 on pollinator demand by crops and pollinator supply, for fourteen economically important crops. Additionally, we systematized an expert-based Ecosystem Service matrix to estimate the influences of LULCC on the provision of pollination. Our results showed that by 2030, the demand for pollination will increase by 40% on average, while pollinator supply, estimated using suitability values for the different land-use/cover classes, will show, on average, a 3% decrease. Our results highlight the importance of considering the dialogue among stakeholders, governments, institutions, and scientists to find alternatives and strategies to promote pollinator-friendly practices and safeguard the provision of pollination services in a future under LULCC.


Author(s):  
Luoman Pu ◽  
Jiuchun Yang ◽  
Lingxue Yu ◽  
Changsheng Xiong ◽  
Fengqin Yan ◽  
...  

Crop potential yields in cropland are the essential reflection of the utilization of cropland resources. The changes of the quantity, quality, and spatial distribution of cropland will directly affect the crop potential yields, so it is very crucial to simulate future cropland distribution and predict crop potential yields to ensure the future food security. In the present study, the Cellular Automata (CA)-Markov model was employed to simulate land-use changes in Northeast China during 2015–2050. Then, the Global Agro-ecological Zones (GAEZ) model was used to predict maize potential yields in Northeast China in 2050, and the spatio-temporal changes of maize potential yields during 2015–2050 were explored. The results were the following. (1) The woodland and grassland decreased by 5.13 million ha and 1.74 million ha respectively in Northeast China from 2015 to 2050, which were mainly converted into unused land. Most of the dryland was converted to paddy field and built-up land. (2) In 2050, the total maize potential production and average potential yield in Northeast China were 218.09 million tonnes and 6880.59 kg/ha. Thirteen prefecture-level cities had maize potential production of more than 7 million tonnes, and 11 cities had maize potential yields of more than 8000 kg/ha. (3) During 2015–2050, the total maize potential production and average yield decreased by around 23 million tonnes and 700 kg/ha in Northeast China, respectively. (4) The maize potential production increased in 15 cities located in the plain areas over the 35 years. The potential yields increased in only nine cities, which were mainly located in the Sanjiang Plain and the southeastern regions. The results highlight the importance of coping with the future land-use changes actively, maintaining the balance of farmland occupation and compensation, improving the cropland quality, and ensuring food security in Northeast China.


2021 ◽  
Author(s):  
Peter H. Verburg ◽  
Žiga Malek ◽  
Sean P. Goodwin ◽  
Cecilia Zagaria

The Conversion of Land Use and its Effects modeling framework (CLUE) was developed to simulate land use change using empirically quantified relations between land use and its driving factors in combination with dynamic modeling of competition between land use types. Being one of the most widely used spatial land use models, CLUE has been applied all over the world on different scales. In this document, we demonstrate how the model can be used to develop a multi-regional application. This means, that instead of developing numerous individual models, the user only prepares one CLUE model application, which then allocates land use change across different regions. This facilitates integration with the Integrated Economic-Environmental Modeling (IEEM) Platform for subnational assessments and increases the efficiency of the IEEM and Ecosystem Services Modeling (IEEMESM) workflow. Multi-regional modelling is particularly useful in larger and diverse countries, where we can expect different spatial distributions in land use changes in different regions: regions of different levels of achieved socio-economic development, regions with different topographies (flat vs. mountainous), or different climatic regions (dry vs humid) within a same country. Accounting for such regional differences also facilitates developing ecosystem services models that consider region specific biophysical characteristics. This manual, and the data that is provided with it, demonstrates multi-regional land use change modeling using the country of Colombia as an example. The user will learn how to prepare the data for the model application, and how the multi-regional run differs from a single-region simulation.


Sign in / Sign up

Export Citation Format

Share Document