scholarly journals Control of Yaw Disturbance Using Fuzzy Logic Based Yaw Stability Controller

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
S. Krishna ◽  
S. Narayanan ◽  
S. Denis Ashok

Yaw stability is an important consideration for the vehicle directional stability and handling behavior during emergency maneuvers. In order to maintain the desired path of the vehicle, in presence of disturbances due to cross wind, different road conditions, and tire deflections, a fuzzy logic based yaw stability controller is proposed in this paper. Proposed control system receives yaw rate error, steering angle given by the driver, and side slip angle as inputs, for calculating the additional steering angle as output, for maintaining the yaw stability of the vehicle. As the side slip angle cannot be measured directly in a vehicle, it was estimated using a model based Kalman observer. A two-degrees-of-freedom vehicle model is considered in the present work. The effect of disturbance on yaw rate and yaw rate error of the vehicle is simulated for sinusoidal, step maneuver and compared with the existing fuzzy control system which uses two inputs such as steering angle and yaw rate. The simulation results show better performance of the proposed fuzzy based yaw controller as compared with existing control system. Proposed fuzzy based yaw stability controller can be implemented in steer-by-wire system for an active front steering of a road vehicle.

Author(s):  
Avesta Goodarzi ◽  
Samaneh Arabi ◽  
Ebrahim Esmailzadeh

An integrated vehicle dynamic control system for a four-wheel drive vehicle with an active front steering (AFS) and active centre differential (ACD), based on fuzzy logic control, is developed to improve the vehicle stability and its handling performance. The control system has a hierarchical structure consisting of two layers. A fuzzy logic controller is used in the upper layer to keep the yaw rate in its desired value. The yaw rate error and the side slip angle are applied to the upper controlling layer as the inputs, where the desired traction torque transfer ratio and the steering angle correction of the front wheels are the outputs. However, the ideal control effectors could not directly be the control inputs for the centre differential. Therefore, in the lower control loop, one should map the ideal control effectors to the physical control inputs for the centre differential by optimum dynamic traction force distribution. A nonlinear eight degree-of-freedom (DOF) vehicle model with the traction force distribution being utilized by a PI controller is considered. The simulation results illustrate considerable improvements have been achieved for the vehicle stability and handling performance through the integrated AFS/ACD control system.


Author(s):  
Gyoung-eun Kim ◽  
◽  
Jae-woo Yoon ◽  
Byeong-woo Kim ◽  
◽  
...  

2014 ◽  
Vol 71 (2) ◽  
Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic includes a technique are widely applied to the vehicle steering control system, however, to get the parameters required by a reliable Fuzzy Logic Control (FLC), needed training and learning process. Quantum behaved Particle Swarm Optimization (QPSO) is a simple optimization method that guarantees the achievement of global convergence quickly. This paper aimed to optimize of the steering control system on vehicle with steer-by-wire system using QPSO. The vehicle steering control system consists of Fuzzy Logic Control (FLC) and the Proportional, Integral and Derivative (PID) control are built in cascade, in which FLC is used to minimize the lateral motion error and PID control is used to suppress yaw motion error of the vehicle. The parameters of the control system are optimized by QPSO consists of three parameters to determine the position of the centre and the width of the triangle membership function of FLC and three constant gain of PID control. The optimization is done through the software in the loop simulation of vehicle models represented by 10 Degree of Freedom (DOF) of the vehicle dynamics. Simulation results showed that optimization using QPSO on the parameters of the control system can guarantee the movement of the vehicle is constantly maintained at the desired trajectory with a smaller error and higher vehicle speeds compared to the control system without tuned. The results obtained will be used as the basis for testing of the hardware in the loop simulation (HILS) so it can further improve the performance of steer-by-wire system. 


Author(s):  
Sohel Anwar ◽  
Lei Chen

This paper presents a novel observer-based analytical redundancy for a steer-by-wire (SBW) system. In order to achieve high level of reliability for a By-Wire system, double, triple, or even quadruple redundant sensors, actuators, communication networks, and controllers are needed. But this added hardware increases the overall cost of the vehicle. This paper utilizes a novel analytical redundancy methodology to reduce the total number of redundant road-wheel angle (RWA) sensors in a triply redundant RWA-based SBW system, while maintaining a high level of reliability. The self-aligning torque at road-tire interface due to the steering dynamics has been modeled as a function of the linear vehicle states. A full state observer was designed using the combined model of the vehicle and SBW system to estimate the vehicle body side slip angle. The steering angle was then estimated from the observed and measured states of the vehicle (body side slip angle and yaw rate) as well as the current input to the SBW electric motor(s). With at least two physical road-wheel angle sensors and the analytical estimation of the RWA value (which replaces the third physical sensor), a fault detection and isolation (FDI) algorithm was developed using a majority voting scheme. The FDI algorithm was then used to detect faulty sensor(s) in order to maintain safe drivability. The proposed analytical redundancy based fault detection & isolation algorithms and the linearized vehicle model were modeled in SIMULINK. Simulation of the proposed algorithm was performed for both single and multiple sensor faults. Simulation results show that the proposed analytical redundancy based fault detection and isolation algorithm provides the same level of fault tolerance as in an SBW system with full hardware redundancy against single point failures.


2014 ◽  
Vol 577 ◽  
pp. 594-597
Author(s):  
Fang Li ◽  
Shu Fang Geng

Sideslip angle and yaw rate can reflect the essential characteristics of the vehicle steering motion in steer by wire system, and determine the stability of the vehicle, sideslip angle is generally obtained through observation. In order to enhance the stability of the vehicle, hybrid observation method for side slip angle is used, in which dynamic integration is mainly used when the raw rate is relatively small, and extended kalman filtering is mainly used when the raw rate is large. In the observer design, the value and change rate of raw rate is used to calculate a weight coefficient to determine the proportion of two observation method in the observer. The simulation results show that the method can efficiently decrease the observation error of the side slip and improve the observation accuracy.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 133100-133110 ◽  
Author(s):  
Hyeongjin Hwang ◽  
Hyungjeen Choi ◽  
Kanghyun Nam

2013 ◽  
Vol 397-400 ◽  
pp. 1351-1356
Author(s):  
Hai Feng Song ◽  
Wei Wei Yang

A control method is proposed to improve vehicle yaw stability by the integrated control of yaw moment control. The control strategy using feedback compensator is proposed, which produces direct yaw moment and front steering angle to control yaw rate, by actively controlling the front steering angle, the integrated control system makes the performance of the actual vehicle model follow that of an ideal vehicle model. A experiment is performed at different conditions, the results showed the presented method can effectively control the yaw rate, and at the same time lighten the burden of the driver. Key words: EPS; Yaw rate feedback; Vehicle stability


Author(s):  
Srivatsan Srinivasan ◽  
Matthias J. Schmid ◽  
Venkat N. Krovi

Abstract Incorporation of electronic yaw stabilization in on-road vehicles can take many forms. Although the most popular ones are differential braking and torque distribution, a potentially better alternative would be the inclusion of a controller into the steering process. However, this is not often pursued in mechanically-coupled steering systems since the controller could work against the driver’s intentions creating potential challenges to safety. The growing adoption of steer-by-wire (SbW) systems now in autonomous/semi-autonomous vehicles offers an opportunity to simplify the incorporation of such steering-controller based assistance. Most current steering-assistance systems focus either on adaptive steering control (adaptive power steering and gear ratios) or on total steering control in autopilot functions (lane keeping control). Such steering-controllers (incorporated via SbW modality) can improve driving performance and maneuverability and contribute to the overall suite of active-safety vehicle systems. In this study, we introduce a new pure-feedforward (open loop) controller for the steer-by-wire system based on the concept of reference shaping control aimed at reducing the vibration/oscillation caused in vehicles during fast (evasive) maneuvers.


2014 ◽  
Vol 505-506 ◽  
pp. 301-309
Author(s):  
Hua Dong Xu

The steering stability of a vehicle at high speed is the urgent key problem to be solved of automobile independent development. And it is also the premise and one of the necessary conditions of vehicle safety. Considering of the effects of tire nonlinearity, a 4-DOF dynamics model for a vehicle is established. The yaw rate responses, side slip angle, carriage roll angle and front wheel steering angle with different vehicle speeds are calculated. The calculated values are then compared with the values without considering of the effects of tire nonlinearity. The simulations results show that the vehicle responses can be reflected accurately by using nonlinear tire model. With the bigger vehicle speed, the effects of tire nonlinearity on vehicle high-speed steering stability become more obvious.


Sign in / Sign up

Export Citation Format

Share Document