scholarly journals Practical Synchronous Steering Angle Control of a Dual-Motor Driving Steer-by-Wire System

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 133100-133110 ◽  
Author(s):  
Hyeongjin Hwang ◽  
Hyungjeen Choi ◽  
Kanghyun Nam
Author(s):  
Lingfeng Zhao ◽  
Qinxing Cao ◽  
Yanping Hu ◽  
Guang Xia ◽  
Jinfang Hu ◽  
...  

In this paper, a stability control method based on active front steering control is proposed to steer by wire system (SBW). The proposed control system consists of an inner-loop angle tracking controller and an outer-loop controller. The inner-loop controller contributes to front steering angle tracking, and it is designed by PID control. The outer-loop controller restrains the effect of disturbance by feeding a compensation steering angle, and it is designed by using Improved Active Disturbances Rejection Control (IADRC) with less adjusted parameters than Active Disturbances Rejection Control (ADRC). Finally, the effectiveness of the proposed method is evaluated via numerical simulation and vehicle test. The obtained results show that the proposed controller can improve the handling stability of the SBW system. To a certain extent, the study results promote the research and application of SBW system.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1111-1118
Author(s):  
Daigo Uchino ◽  
Xiaojun Liu ◽  
Hideaki Kato ◽  
Takayoshi Narita

Ultra-compact electric vehicles has excellent environmental performance and are extremely convenient for short-distance travel. However, owing to cabin space limitations, it is difficult to mount power steering. Therefore, there is a need to increase the gear ratio of the rack and pinion to change steering angle because such vehicles need light torque to steer. However, increasing the gear ratio requires more rotations of the steering wheel. Our research group focused on developing a steer-by-wire system (SBWS) that freely controls the steering torque. Although we evaluated the burden when a driver rotates the steering wheel in one direction in a previous study. This study assumed the actual steering operation in an SBWS. And then we evaluate muscle burden when a driver steers with continuous changing of the steering direction.


2013 ◽  
Vol 336-338 ◽  
pp. 1037-1040 ◽  
Author(s):  
Hong Yu Zheng ◽  
Bing Yu Wang ◽  
Chang Fu Zong

In the steer by wire system of vehicle, a joystick can instead of the steering wheel. A control algorithm based on variable steering ratio is developed on the basis of vehicle speed and joystick steering angle. By verifying the control algorithm with the vehicle model from CarSim, it shows that this proposed algorithm can effective carry out steering intention of drivers, which enhance the steer comfort in low speed driving and steer handling in high speed driving and effectively improve the vehicle maneuverability.


2012 ◽  
Vol 190-191 ◽  
pp. 890-893 ◽  
Author(s):  
Yi Ran Li ◽  
Jian Ming Huang ◽  
Zhi Ming He

In this paper, active disturbance rejection control method is used to implement the steering angle following control of steer-by-wire system for the simplification of controller designing. The dynamic model of steering performing system is established, and then a second order active disturbance rejection controller is designed to control the steering angle. On the electric vehicle with steer-by-wire system, the angle following test of steering performing system is carried out under the control of the second order active disturbance rejection controller. The results show that the designed active disturbance rejection controller can restrain the effect of system resistant force on the accuracy of angle following and meet the requirement of steer-by-wire system to the steering angle following function. At the same time, there isn’t necessary to get the accurate data of steering system and the design process of controller becomes simple with adopting active disturbance rejection control method.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
S. Krishna ◽  
S. Narayanan ◽  
S. Denis Ashok

Yaw stability is an important consideration for the vehicle directional stability and handling behavior during emergency maneuvers. In order to maintain the desired path of the vehicle, in presence of disturbances due to cross wind, different road conditions, and tire deflections, a fuzzy logic based yaw stability controller is proposed in this paper. Proposed control system receives yaw rate error, steering angle given by the driver, and side slip angle as inputs, for calculating the additional steering angle as output, for maintaining the yaw stability of the vehicle. As the side slip angle cannot be measured directly in a vehicle, it was estimated using a model based Kalman observer. A two-degrees-of-freedom vehicle model is considered in the present work. The effect of disturbance on yaw rate and yaw rate error of the vehicle is simulated for sinusoidal, step maneuver and compared with the existing fuzzy control system which uses two inputs such as steering angle and yaw rate. The simulation results show better performance of the proposed fuzzy based yaw controller as compared with existing control system. Proposed fuzzy based yaw stability controller can be implemented in steer-by-wire system for an active front steering of a road vehicle.


Sign in / Sign up

Export Citation Format

Share Document