scholarly journals Optical and Magnetic Properties of Fe Doped ZnO Nanoparticles Obtained by Hydrothermal Synthesis

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Xiaojuan Wu ◽  
Zhiqiang Wei ◽  
Lingling Zhang ◽  
Xuan Wang ◽  
Hua Yang ◽  
...  

Diluted magnetic semiconductorsZn1-xFexOnanoparticles with different doping concentration (x=0, 0.01, 0.05, 0.10, and 0.20) were successfully synthesized by hydrothermal method. The crystal structure, morphology, and optical and magnetic properties of the samples were characterized by X-ray diffraction (XRD), energy dispersive spectrometer (EDS), high-resolution transmission electron microscopy (HRTEM), Raman scattering spectra (Raman), photoluminescence spectra (PL), and the vibrating sample magnetometer (VSM). The experiment results show that all samples synthesized by this method possess hexagonal wurtzite crystal structure with good crystallization, no other impurity phases are observed, and the morphology of the sample shows the presence of ellipsoidal nanoparticles. All theFe3+successfully substituted for the lattice site ofZn2+and generates single-phaseZn1-xFexO. Raman spectra shows that the peak shifts to higher frequency. PL spectra exhibit a slight blue shift and the UV emission is annihilated with the increase ofFe3+concentration. Magnetic measurements indicated that Fe-doped ZnO samples exhibit ferromagnetic behavior at room temperature and the saturation magnetization is enhanced with the increase of iron doping content.

2020 ◽  
Vol 16 (4) ◽  
pp. 655-666
Author(s):  
Mona Rekaby

Objective: The influence of Manganese (Mn2+) and Cobalt (Co2+) ions doping on the optical and magnetic properties of ZnO nanoparticles was studied. Methods: Nanoparticle samples of type ZnO, Zn0.97Mn0.03O, Zn0.96Mn0.03Co0.01O, Zn0.95Mn0.03 Co0.02O, Zn0.93Mn0.03Co0.04O, and Zn0.91Mn0.03Co0.06O were synthesized using the wet chemical coprecipitation method. Results: X-ray powder diffraction (XRD) patterns revealed that the prepared samples exhibited a single phase of hexagonal wurtzite structure without any existence of secondary phases. Transmission electron microscope (TEM) images clarified that Co doping at high concentrations has the ability to alter the morphologies of the samples from spherical shaped nanoparticles (NPS) to nanorods (NRs) shaped particles. The different vibrational modes of the prepared samples were analyzed through Fourier transform infrared (FTIR) measurements. The optical characteristics and structural defects of the samples were studied through Photoluminescence (PL) spectroscopy. PL results clarified that Mn2+ and Co2+ doping quenched the recombination of electron-hole pairs and enhanced the number of point defects relative to the undoped ZnO sample. Magnetic measurements were carried out at room temperature using a vibrating sample magnetometer (VSM). (Mn, Co) co-doped ZnO samples exhibited a ferromagnetic behavior coupled with paramagnetic and weak diamagnetic contributions. Conclusion: Mn2+ and Co2+ doping enhanced the room temperature Ferromagnetic (RTFM) behavior of ZnO. In addition, the signature for antiferromagnetic ordering between the Co ions was revealed. Moreover, a strong correlation between the magnetic and optical behavior of the (Mn, Co) co-doped ZnO was analyzed.


2012 ◽  
Vol 706-709 ◽  
pp. 2869-2873
Author(s):  
M. Ionescu ◽  
P. Photongkam ◽  
R. Siegele ◽  
A. Deslantes ◽  
S. Li ◽  
...  

The intrinsic n-type (II-VI) semiconductor ZnO may become ferromagnetic at room temperature, by small additions of magnetic ions, resulting in what is called a Diluted Magnetic Semiconductors (DMS). The potential application of DMS in spintronic devices of is driving the research effort to dope magnetic elements into this semiconductors with a depth distribution as uniform as possible. The doping levels and the depth distribution of dopants are critical parameters for the magnetic properties of this material and the possible clustering of dopants can play a significant negative role in its macroscopic magnetic properties. Thin ZnO (0001) films of between 100nm and 500nm, grown on c-Al2O3 by MOCVD were implanted with Co, Eu and Co+Eu by ion irradiation at low energies. In order to improve the depth distribution of dopants, the ion implantation was carried out through a number of appropriately chosen range foils. The results show an increase in the level of dopant homogeneity throughout the entire thickness of the film, and a ferromagnetic behavior above room temperature for Zn0.96Co0.04O, Zn0.96Eu0.04O and Zn0.92Co0.04Eu0.04O.


2006 ◽  
Vol 422 (4-6) ◽  
pp. 529-533 ◽  
Author(s):  
S. Colis ◽  
H. Bieber ◽  
S. Bégin-Colin ◽  
G. Schmerber ◽  
C. Leuvrey ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Meirong Wu ◽  
Zhiqiang Wei ◽  
Wenhua Zhao ◽  
Xuan Wang ◽  
Jinlong Jiang

Diluted magnetic semiconductors Zn1-xNixS with different consistency ratio (x = 0, 0.01, 0.03, 0.05, and 0.07) were successfully synthesized by hydrothermal method using ethylenediamine as a modifier. The influence of Ni doping concentration on the microstructure, morphology, and optical and magnetic properties of undoped and Ni doped ZnS nanocrystals was characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray energy dispersive spectrometry (XEDS), ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT-IR), photoluminescence spectra (PL), and the vibrating sample magnetometer (VSM), respectively. The experiment results show the substitution of Ni2+ on Zn2+ sites without changing the hexagonal wurtzite structure of ZnS and generate single-phase Zn1-xNixS with good crystallization. The lattice constant causes distortion and decreases with the increase of Ni2+ doped concentration. The appearance of the samples is one-dimensional well-dispersed nanorods. UV-vis spectra reveal the band gap of all Zn1-xNixS samples greater than that of bulk ZnS (3.67 eV), and blue shift phenomenon occurs. The photoluminescence spectra of undoped and doped samples possess the broad blue emission band in the range of 400–650 nm; the PL intensities of Zn1-xNixS nanorods increase with the increase of Ni content comparing to pure ZnS and reach maximum for x = 0.03. Magnetic measurements indicated that the undoped ZnS samples are superparamagnetic, whereas the doped samples exhibit ferromagnetism.


Sign in / Sign up

Export Citation Format

Share Document