scholarly journals Analytical Model for High Impedance Fault Analysis in Transmission Lines

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
S. Maximov ◽  
V. Torres ◽  
H. F. Ruiz ◽  
J. L. Guardado

A high impedance fault (HIF) normally occurs when an overhead power line physically breaks and falls to the ground. Such faults are difficult to detect because they often draw small currents which cannot be detected by conventional overcurrent protection. Furthermore, an electric arc accompanies HIFs, resulting in fire hazard, damage to electrical devices, and risk with human life. This paper presents an analytical model to analyze the interaction between the electric arc associated to HIFs and a transmission line. A joint analytical solution to the wave equation for a transmission line and a nonlinear equation for the arc model is presented. The analytical model is validated by means of comparisons between measured and calculated results. Several cases of study are presented which support the foundation and accuracy of the proposed model.

2020 ◽  
Vol 14 (1) ◽  
pp. 21-26
Author(s):  
S. SKRYPNYK ◽  
◽  
A. SHEINA ◽  

Most failures in electrical installations are caused by short circuits (short circuits), which occur as a result of a failure in the electrical strength of the insulation of the conductive parts. A short circuit is an electrical connection of two points of an electric circuit with different values of potential, which is not provided by the design of the device, which interferes with its normal operation. Short circuits may result from a failure of the insulation of the current-carrying elements or the mechanical contact of the non- insulated elements. Also called a short circuit is a condition where the load resistance is less than the internal resistance of the power source. The reasons for such violations are various: aging of insulation, breakages of wires of overhead transmission lines, mechanical damages of isolation of cable lines at ground works, lightning strikes in the transmission line and others. Most often, short-circuits occur through transient resistance, such as through the resistance of an electric arc that occurs at the point of damage to the insulation. Sometimes there are metallic short circuits in which the resistance of the electric arc is very small. The study of short circuits in the power grid is a major step in the design of modern electrical networks. The research is conducted using computer software, first by modeling the system and then simulating errors. A malfunction usually leads to an increase in the current flowing in the lines, and failure to provide reliable protection can result in damage to the power unit. Thus, short-circuit calculations are the primary consideration when designing, upgrading, or expanding a power system. The three-phase short circuit is the least likely. However, in many cases, the three-phase short circuit is associated with the most severe consequences, as it causes the highest power imbalances on the shafts of the generators. The study of transients begins with the mode of three-phase closure due to its relative simplicity in comparison with other types of asymmetry. In most cases, the analysis and calculation of the transient regime of the electrical system involves the preparation of a calculated scheme of substitution, in which the parameters of its elements are determined in named or relative units. The electrical substitution circuitry is used to further study the transients in the power system. The definition of electrical and electromagnetic quantities in relative units is widely used in the theory of electric machines. This is because it significantly simplifies the theoretical calculations and gives the results a generalized view in the practical calculations of currents and residual voltages at the short circuit. By the relative value of any value is understood as its relation to another value of the same name, taken as the base. So, before presenting any quantities in relative units, we need to choose the basic units. In the electrical system with increased voltages, the overall load capacity of the network increases, which in turn makes it possible to supply high-quality electrical energy over a greater distance. In the process of comparing the type of transmission lines, it should be noted that the advantages of the cable transmission line. According to the results of the calculation of short-circuit currents, it can be concluded that in networks with a larger line cross-section and a higher voltage, the short-circuit currents are larger. Thus, during the transition of the electric networks to the higher voltage class of 20 kV, the currents of the KZ increased by 43% compared to the 6 kV electric network. This analysis shows that the importance of reliable power supply in the power supply system for high voltage classes must be high and have equipment to prevent emergencies. In the future, it is planned to develop a systematic calculation of short-circuit currents for a number of transmission lines and to conduct mathematical modeling in the system of applications for the study of transient processes at short circuits.


Author(s):  
Jia Jun ◽  
Rui Fu ◽  
Wang Jian ◽  
Dai Yong Dong ◽  
Shen Xiang ◽  
...  

This paper briefly introduces the background, significance, and development status of 3D radar technology at home and abroad, and then explains the concept, working principle, system composition, and workflow of the radar system. Combined with the current development trend of smart grids, it focuses on the application scope of this technology in the field of transmission line construction, operation, and maintenance. Then, through the specific implementation of the project cases, the daily operation and maintenance of four 500 kV transmission lines in Nanjing have played a certain guiding role. Finally, according to the development trend of smart grid and the actual demand of power system production and business integration, this paper briefly prospects the function expansion of this technology in transmission line operation evaluation, fault analysis and diagnosis, emergency rescue plan formulation, and other fields.


Author(s):  
Hui Hwang Goh ◽  
Sy yi Sim ◽  
Asad Shaykh ◽  
Md. Humayun Kabir ◽  
Chin Wan Ling ◽  
...  

<p>Transmission line is the most important part of the power system.  Transmission lines a principal amount of power. The requirement of power and its allegiance has grown up exponentially over the modern era, and the major role of a transmission line is to transmit electric power from the source area to the distribution network. The exploded between limited production, and a tremendous claim has grown the focus on minimizing power losses. Losses like transmission loss and also conjecture factors as like as physical losses to various technical losses, Another thing is the primary factor it has a reactive power and voltage deviation are momentous in the long-range transmission power line. In essentially, fault analysis is a very focusing issue in power system engineering to clear fault in short time and re-establish power system as quickly as possible on very minimum interruption. However,  the fault detection that interrupts the transmission line is itself challenging task to investigate fault as well as improving the reliability of the system. The transmission line is susceptible given all parameters that connect the whole power system. This paper presents a review of transmission line fault detection.</p>


Author(s):  
Doaa khalil Ibrahim ◽  
El Sayed Tag Eldin ◽  
Essam M Aboul-Zahab ◽  
Saber Mohamed. Saleh

Sign in / Sign up

Export Citation Format

Share Document